284 lines
8.6 KiB
Nim
284 lines
8.6 KiB
Nim
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
# ############################################################
|
|
#
|
|
# Summary of the performance of a curve
|
|
#
|
|
# ############################################################
|
|
|
|
import
|
|
# Internals
|
|
../constantine/platforms/abstractions,
|
|
../constantine/math/config/curves,
|
|
../constantine/math/[arithmetic, extension_fields],
|
|
../constantine/math/elliptic/[
|
|
ec_shortweierstrass_affine,
|
|
ec_shortweierstrass_projective,
|
|
ec_shortweierstrass_jacobian,
|
|
ec_scalar_mul, ec_endomorphism_accel],
|
|
../constantine/math/constants/zoo_subgroups,
|
|
../constantine/math/pairings/[
|
|
cyclotomic_subgroups,
|
|
pairings_bls12,
|
|
pairings_bn
|
|
],
|
|
../constantine/math/constants/zoo_pairings,
|
|
../constantine/hashes,
|
|
../constantine/hash_to_curve/hash_to_curve,
|
|
# Helpers
|
|
../helpers/[prng_unsafe, static_for],
|
|
./bench_blueprint
|
|
|
|
export
|
|
ec_shortweierstrass_projective,
|
|
ec_shortweierstrass_jacobian
|
|
|
|
export abstractions # generic sandwich on SecretBool and SecretBool in Jacobian sum
|
|
export zoo_pairings # generic sandwich https://github.com/nim-lang/Nim/issues/11225
|
|
export notes
|
|
proc separator*() = separator(152)
|
|
|
|
proc report(op, domain: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
|
|
let ns = inNanoseconds((stop-start) div iters)
|
|
let throughput = 1e9 / float64(ns)
|
|
when SupportsGetTicks:
|
|
echo &"{op:<35} {domain:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
|
|
else:
|
|
echo &"{op:<35} {domain:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op"
|
|
|
|
macro fixEllipticDisplay(T: typedesc): untyped =
|
|
# At compile-time, enums are integers and their display is buggy
|
|
# we get the Curve ID instead of the curve name.
|
|
let instantiated = T.getTypeInst()
|
|
var name = $instantiated[1][0] # EllipticEquationFormCoordinates
|
|
let fieldName = $instantiated[1][1][0]
|
|
let curveName = $Curve(instantiated[1][1][1].intVal)
|
|
name.add "[" & fieldName & "[" & curveName & "]]"
|
|
result = newLit name
|
|
|
|
macro fixFieldDisplay(T: typedesc): untyped =
|
|
# At compile-time, enums are integers and their display is buggy
|
|
# we get the Curve ID instead of the curve name.
|
|
let instantiated = T.getTypeInst()
|
|
var name = $instantiated[1][0] # Fp
|
|
name.add "[" & $Curve(instantiated[1][1].intVal) & "]"
|
|
result = newLit name
|
|
|
|
func fixDisplay(T: typedesc): string =
|
|
when T is (ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_ShortW_Aff):
|
|
fixEllipticDisplay(T)
|
|
elif T is (Fp or Fp2 or Fp4 or Fp6 or Fp12):
|
|
fixFieldDisplay(T)
|
|
else:
|
|
$T
|
|
|
|
func fixDisplay(T: Curve): string =
|
|
$T
|
|
|
|
template bench(op: string, T: typed, iters: int, body: untyped): untyped =
|
|
measure(iters, startTime, stopTime, startClk, stopClk, body)
|
|
report(op, fixDisplay(T), startTime, stopTime, startClk, stopClk, iters)
|
|
|
|
func clearCofactorReference[F; G: static Subgroup](
|
|
ec: var ECP_ShortW_Aff[F, G]) =
|
|
# For now we don't have any affine operation defined
|
|
var t {.noInit.}: ECP_ShortW_Prj[F, G]
|
|
t.fromAffine(ec)
|
|
t.clearCofactorReference()
|
|
ec.affine(t)
|
|
|
|
func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} =
|
|
result = rng.random_unsafe(EC)
|
|
result.clearCofactorReference()
|
|
|
|
proc mulBench*(T: typedesc, iters: int) =
|
|
var r: T
|
|
let x = rng.random_unsafe(T)
|
|
let y = rng.random_unsafe(T)
|
|
preventOptimAway(r)
|
|
bench("Multiplication", T, iters):
|
|
r.prod(x, y)
|
|
|
|
proc sqrBench*(T: typedesc, iters: int) =
|
|
var r: T
|
|
let x = rng.random_unsafe(T)
|
|
preventOptimAway(r)
|
|
bench("Squaring", T, iters):
|
|
r.square(x)
|
|
|
|
proc invBench*(T: typedesc, iters: int) =
|
|
var r: T
|
|
let x = rng.random_unsafe(T)
|
|
preventOptimAway(r)
|
|
bench("Inversion", T, iters):
|
|
r.inv(x)
|
|
|
|
proc sqrtBench*(T: typedesc, iters: int) =
|
|
let x = rng.random_unsafe(T)
|
|
bench("Square Root + isSquare", T, iters):
|
|
var r = x
|
|
discard r.sqrt_if_square()
|
|
|
|
proc addBench*(T: typedesc, iters: int) =
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T)
|
|
let Q = rng.random_unsafe(T)
|
|
bench("EC Add " & G1_or_G2, T, iters):
|
|
r.sum(P, Q)
|
|
|
|
proc mixedAddBench*(T: typedesc, iters: int) =
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T)
|
|
let Q = rng.random_unsafe(T)
|
|
var Qaff: ECP_ShortW_Aff[T.F, T.G]
|
|
Qaff.affine(Q)
|
|
bench("EC Mixed Addition " & G1_or_G2, T, iters):
|
|
r.madd(P, Qaff)
|
|
|
|
proc doublingBench*(T: typedesc, iters: int) =
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T)
|
|
bench("EC Double " & G1_or_G2, T, iters):
|
|
r.double(P)
|
|
|
|
proc scalarMulBench*(T: typedesc, iters: int) =
|
|
const bits = T.F.C.getCurveOrderBitwidth()
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T) # TODO: clear cofactor
|
|
let exponent = rng.random_unsafe(BigInt[bits])
|
|
|
|
bench("EC ScalarMul " & $bits & "-bit " & G1_or_G2, T, iters):
|
|
r = P
|
|
when T.F is Fp:
|
|
r.scalarMulGLV_m2w2(exponent)
|
|
else:
|
|
r.scalarMulEndo(exponent)
|
|
|
|
proc millerLoopBLS12Bench*(C: static Curve, iters: int) =
|
|
let
|
|
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
|
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
|
|
|
var f: Fp12[C]
|
|
bench("Miller Loop BLS12", C, iters):
|
|
f.millerLoopGenericBLS12(P, Q)
|
|
|
|
proc millerLoopBNBench*(C: static Curve, iters: int) =
|
|
let
|
|
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
|
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
|
|
|
var f: Fp12[C]
|
|
bench("Miller Loop BN", C, iters):
|
|
f.millerLoopGenericBN(P, Q)
|
|
|
|
proc finalExpBLS12Bench*(C: static Curve, iters: int) =
|
|
var r = rng.random_unsafe(Fp12[C])
|
|
bench("Final Exponentiation BLS12", C, iters):
|
|
r.finalExpEasy()
|
|
r.finalExpHard_BLS12()
|
|
|
|
proc finalExpBNBench*(C: static Curve, iters: int) =
|
|
var r = rng.random_unsafe(Fp12[C])
|
|
bench("Final Exponentiation BN", C, iters):
|
|
r.finalExpEasy()
|
|
r.finalExpHard_BN()
|
|
|
|
proc pairingBLS12Bench*(C: static Curve, iters: int) =
|
|
let
|
|
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
|
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
|
|
|
var f: Fp12[C]
|
|
bench("Pairing BLS12", C, iters):
|
|
f.pairing_bls12(P, Q)
|
|
|
|
proc pairingBNBench*(C: static Curve, iters: int) =
|
|
let
|
|
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
|
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
|
|
|
var f: Fp12[C]
|
|
bench("Pairing BN", C, iters):
|
|
f.pairing_bn(P, Q)
|
|
|
|
proc hashToCurveBLS12381G1Bench*(iters: int) =
|
|
# Hardcode BLS12_381
|
|
# otherwise concept symbol
|
|
# 'CryptoHash' resolution issue
|
|
const dst = "BLS_SIG_BLS12381G1-SHA256-SSWU-RO_POP_"
|
|
let msg = "Mr F was here"
|
|
var P: ECP_ShortW_Prj[Fp[BLS12_381], G1]
|
|
|
|
bench("Hash to G1 (SSWU - Draft #14)", BLS12_381, iters):
|
|
sha256.hashToCurve(
|
|
k = 128,
|
|
output = P,
|
|
augmentation = "",
|
|
message = msg,
|
|
domainSepTag = dst
|
|
)
|
|
|
|
proc hashToCurveBLS12381G2Bench*(iters: int) =
|
|
# Hardcode BLS12_381
|
|
# otherwise concept symbol
|
|
# 'CryptoHash' resolution issue
|
|
const dst = "BLS_SIG_BLS12381G2-SHA256-SSWU-RO_POP_"
|
|
let msg = "Mr F was here"
|
|
var P: ECP_ShortW_Prj[Fp2[BLS12_381], G2]
|
|
|
|
bench("Hash to G2 (SSWU - Draft #14)", BLS12_381, iters):
|
|
sha256.hashToCurve(
|
|
k = 128,
|
|
output = P,
|
|
augmentation = "",
|
|
message = msg,
|
|
domainSepTag = dst
|
|
)
|
|
|
|
|
|
proc hashToCurveBN254SnarksG1Bench*(iters: int) =
|
|
# Hardcode BN254_Snarks
|
|
# otherwise concept symbol
|
|
# 'CryptoHash' resolution issue
|
|
const dst = "BLS_SIG_BN254SNARKSG1-SHA256-SVDW-RO_POP_"
|
|
let msg = "Mr F was here"
|
|
var P: ECP_ShortW_Prj[Fp[BN254_Snarks], G1]
|
|
|
|
bench("Hash to G1 (SVDW - Draft #14)", BN254_Snarks, iters):
|
|
sha256.hashToCurve(
|
|
k = 128,
|
|
output = P,
|
|
augmentation = "",
|
|
message = msg,
|
|
domainSepTag = dst
|
|
)
|
|
|
|
proc hashToCurveBN254SnarksG2Bench*(iters: int) =
|
|
# Hardcode BN254_Snarks
|
|
# otherwise concept symbol
|
|
# 'CryptoHash' resolution issue
|
|
const dst = "BLS_SIG_BN254SNARKSG2-SHA256-SVDW-RO_POP_"
|
|
let msg = "Mr F was here"
|
|
var P: ECP_ShortW_Prj[Fp2[BN254_Snarks], G2]
|
|
|
|
bench("Hash to G2 (SVDW - Draft #14)", BN254_Snarks, iters):
|
|
sha256.hashToCurve(
|
|
k = 128,
|
|
output = P,
|
|
augmentation = "",
|
|
message = msg,
|
|
domainSepTag = dst
|
|
)
|