123 lines
3.6 KiB
Nim
123 lines
3.6 KiB
Nim
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
import std/unittest, std/times,
|
||
../constantine/[arithmetic, primitives],
|
||
../constantine/io/[io_fields],
|
||
../constantine/config/[curves, common],
|
||
# Test utilities
|
||
../helpers/prng,
|
||
# Standard library
|
||
std/tables
|
||
|
||
const Iters = 128
|
||
|
||
var rng: RngState
|
||
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||
rng.seed(seed)
|
||
echo "test_finite_fields_sqrt xoshiro512** seed: ", seed
|
||
|
||
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
|
||
|
||
proc exhaustiveCheck_p3mod4(C: static Curve, modulus: static int) =
|
||
test "Exhaustive square root check for p ≡ 3 (mod 4) on " & $Curve(C):
|
||
var squares_to_roots: Table[uint16, set[uint16]]
|
||
|
||
# Create all squares
|
||
# -------------------------
|
||
for i in 0'u16 ..< modulus:
|
||
var a{.noInit.}: Fp[C]
|
||
a.fromUint(i)
|
||
|
||
a.square()
|
||
|
||
var r_bytes: array[8, byte]
|
||
r_bytes.exportRawUint(a, cpuEndian)
|
||
let r = uint16(cast[uint64](r_bytes))
|
||
|
||
squares_to_roots.mgetOrPut(r, default(set[uint16])).incl(i)
|
||
|
||
# From Euler's criterion
|
||
# there is exactly (p-1)/2 squares in 𝔽p* (without 0)
|
||
# and so (p-1)/2 + 1 in 𝔽p (with 0)
|
||
check: squares_to_roots.len == (modulus-1) div 2 + 1
|
||
|
||
# Check squares
|
||
# -------------------------
|
||
for i in 0'u16 ..< modulus:
|
||
var a{.noInit.}: Fp[C]
|
||
a.fromUint(i)
|
||
|
||
if i in squares_to_roots:
|
||
var a2 = a
|
||
check:
|
||
bool a.isSquare()
|
||
bool a.sqrt_if_square_p3mod4()
|
||
|
||
# 2 different code paths have the same result
|
||
# (despite 2 square roots existing per square)
|
||
a2.sqrt_p3mod4()
|
||
check: bool(a == a2)
|
||
|
||
var r_bytes: array[8, byte]
|
||
r_bytes.exportRawUint(a, cpuEndian)
|
||
let r = uint16(cast[uint64](r_bytes))
|
||
|
||
# r is one of the 2 square roots of `i`
|
||
check: r in squares_to_roots[i]
|
||
|
||
else:
|
||
let a2 = a
|
||
|
||
check:
|
||
bool not a.isSquare()
|
||
bool not a.sqrt_if_square_p3mod4()
|
||
bool (a == a2) # a shouldn't be modified
|
||
|
||
proc randomSqrtCheck_p3mod4(C: static Curve) =
|
||
test "Random square root check for p ≡ 3 (mod 4) on " & $Curve(C):
|
||
for _ in 0 ..< Iters:
|
||
let a = rng.random(Fp[C])
|
||
var na{.noInit.}: Fp[C]
|
||
na.neg(a)
|
||
|
||
var a2 = a
|
||
var na2 = na
|
||
a2.square()
|
||
na2.square()
|
||
check:
|
||
bool a2 == na2
|
||
bool a2.isSquare()
|
||
|
||
var r, s = a2
|
||
r.sqrt_p3mod4()
|
||
let ok = s.sqrt_if_square_p3mod4()
|
||
check:
|
||
bool ok
|
||
bool(r == s)
|
||
bool(r == a or r == na)
|
||
|
||
proc main() =
|
||
suite "Modular square root":
|
||
exhaustiveCheck_p3mod4 Fake103, 103
|
||
exhaustiveCheck_p3mod4 Fake10007, 10007
|
||
exhaustiveCheck_p3mod4 Fake65519, 65519
|
||
randomSqrtCheck_p3mod4 Mersenne61
|
||
randomSqrtCheck_p3mod4 Mersenne127
|
||
randomSqrtCheck_p3mod4 BN254_Nogami
|
||
randomSqrtCheck_p3mod4 BN254_Snarks
|
||
randomSqrtCheck_p3mod4 P256
|
||
randomSqrtCheck_p3mod4 Secp256k1
|
||
randomSqrtCheck_p3mod4 BLS12_381
|
||
randomSqrtCheck_p3mod4 BN446
|
||
randomSqrtCheck_p3mod4 FKM12_447
|
||
randomSqrtCheck_p3mod4 BLS12_461
|
||
randomSqrtCheck_p3mod4 BN462
|
||
|
||
main()
|