constantine/tests/prng.nim

103 lines
3.3 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../constantine/arithmetic/bigints,
../constantine/config/[common, curves]
# ############################################################
#
# Pseudo-Random Number Generator
#
# ############################################################
#
# Our field elements for elliptic curve cryptography
# are in the 2^256~2^512 range.
# For pairings, with embedding degrees of 12 to 48
# We would need 12~48 field elements per point on the curve
#
# The recommendation by Vigna at http://prng.di.unimi.it
# is to have a period of t^2 if we need t values (i.e. about 2^1024)
# but also that for all practical purposes 2^256 period is enough
#
# We use 2^512 to cover the range the base field elements
type RngState* = object
s: array[8, uint64]
func splitMix64(state: var uint64): uint64 =
state += 0x9e3779b97f4a7c15'u64
result = state
result = (result xor (result shr 30)) * 0xbf58476d1ce4e5b9'u64
result = (result xor (result shr 27)) * 0xbf58476d1ce4e5b9'u64
result = result xor (result shr 31)
func seed*(rng: var RngState, x: SomeInteger) =
## Seed the random number generator with a fixed seed
var sm64 = uint64(x)
rng.s[0] = splitMix64(sm64)
rng.s[1] = splitMix64(sm64)
rng.s[2] = splitMix64(sm64)
rng.s[3] = splitMix64(sm64)
rng.s[4] = splitMix64(sm64)
rng.s[5] = splitMix64(sm64)
rng.s[6] = splitMix64(sm64)
rng.s[7] = splitMix64(sm64)
func rotl(x: uint64, k: static int): uint64 {.inline.} =
return (x shl k) or (x shr (64 - k))
template `^=`(x: var uint64, y: uint64) =
x = x xor y
func next(rng: var RngState): uint64 =
## Compute a random uint64 from the input state
## using xoshiro512** algorithm by Vigna et al
## State is updated.
result = rotl(rng.s[1] * 5, 7) * 9
let t = rng.s[1] shl 11
rng.s[2] ^= rng.s[0];
rng.s[5] ^= rng.s[1];
rng.s[1] ^= rng.s[2];
rng.s[7] ^= rng.s[3];
rng.s[3] ^= rng.s[4];
rng.s[4] ^= rng.s[5];
rng.s[0] ^= rng.s[6];
rng.s[6] ^= rng.s[7];
rng.s[6] ^= t;
rng.s[7] = rotl(rng.s[7], 21);
# ############################################################
#
# Create a random BigInt or Field element
#
# ############################################################
func random[T](rng: var RngState, a: var T, C: static Curve) {.noInit.}=
## Recursively initialize a BigInt or Field element
when T is BigInt:
var reduced, unreduced{.noInit.}: T
for i in 0 ..< unreduced.limbs.len:
unreduced.limbs[i] = Word(rng.next())
# Note: a simple modulo will be biaised but it's simple and "fast"
reduced.reduce(unreduced, C.Mod.mres)
a.montyResidue(reduced, C.Mod.mres, C.getR2modP(), C.getNegInvModWord(), C.canUseNoCarryMontyMul())
else:
for field in fields(a):
rng.random(field, C)
func random*(rng: var RngState, T: typedesc): T =
## Create a random Field or Extension FIeld Element
rng.random(result, T.C)