constantine/sage/frobenius_bls12_377.sage
Mamy Ratsimbazafy 0e4dbfe400
BLS12-377 (#91)
* add Sage for constant time tonelli shanks

* Fused sqrt and invsqrt via Tonelli Shanks

* isolate sqrt in their own folder

* Implement constant-time Tonelli Shanks for any prime

* Implement Fp2 sqrt for any non-residue

* Add tests for BLS12_377

* Lattice decomposition script for BLS12_377 G1

* BLS12-377 G1 GLV ok, G2 GLV issue

* Proper endomorphism acceleration support for BLS12-377

* Add naive pairing support for BLS12-377

* Activate more bench for BLS12-377

* Fix MSB computation

* Optimize final exponentiation + add benches
2020-09-27 09:15:14 +02:00

166 lines
5.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# BLS12-377
# Frobenius Endomorphism
# Untwist-Frobenius-Twist isogeny
#
# ############################################################
# Parameters
x = 3 * 2^46 * (7 * 13 * 499) + 1
p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
r = x^4 - x^2 + 1
t = x + 1
print('p : ' + p.hex())
print('r : ' + r.hex())
print('t : ' + t.hex())
# Finite fields
Fp = GF(p)
K2.<u> = PolynomialRing(Fp)
Fp2.<beta> = Fp.extension(u^2+5) # √-5 quadratic non-residue
# K6.<v> = PolynomialRing(F2)
# Fp6.<eta> = Fp2.extension(v^3-Fp2([0, 1])
# K12.<w> = PolynomialRing(Fp6)
# Fp12.<gamma> = Fp6.extension(w^2-eta)
# Curves
b = 1
SNR = Fp2([0, 1]) # √-5 sextic non-residue
G1 = EllipticCurve(Fp, [0, b])
G2 = EllipticCurve(Fp2, [0, b/SNR])
# Utilities
def fp2_to_hex(a):
v = vector(a)
return '0x' + Integer(v[0]).hex() + ' + β * ' + '0x' + Integer(v[1]).hex()
# Frobenius map constants
print('\nFrobenius extension field constants')
FrobConst_map = SNR^((p-1)/6)
FrobConst_map_list = []
cur = Fp2([1, 0])
for i in range(6):
FrobConst_map_list.append(cur)
print(f'FrobConst_map_{i} : {fp2_to_hex(cur)}')
cur *= FrobConst_map
print('')
for i in range(6):
print(f'FrobConst_map_{i}_pow2 : {fp2_to_hex(FrobConst_map_list[i]*conjugate(FrobConst_map_list[i]))}')
print('')
for i in range(6):
print(f'FrobConst_map_{i}_pow3 : {fp2_to_hex(FrobConst_map_list[i]**2 * conjugate(FrobConst_map_list[i]))}')
# Frobenius psi constants (D type: use SNR, M type use 1/SNR)
print('\nψ (Psi) - Untwist-Frobenius-Twist constants')
FrobConst_psi = SNR^((p-1)/6)
FrobConst_psi_2 = FrobConst_psi * FrobConst_psi
FrobConst_psi_3 = FrobConst_psi_2 * FrobConst_psi
print('FrobConst_psi : ' + fp2_to_hex(FrobConst_psi))
print('FrobConst_psi_2 : ' + fp2_to_hex(FrobConst_psi_2))
print('FrobConst_psi_3 : ' + fp2_to_hex(FrobConst_psi_3))
print('')
FrobConst_psi2_2 = FrobConst_psi_2 * FrobConst_psi_2**p
FrobConst_psi2_3 = FrobConst_psi_3 * FrobConst_psi_3**p
print('FrobConst_psi2_2 : ' + fp2_to_hex(FrobConst_psi2_2))
print('FrobConst_psi2_3 : ' + fp2_to_hex(FrobConst_psi2_3))
print('')
FrobConst_psi3_2 = FrobConst_psi_2 * FrobConst_psi2_2**p
FrobConst_psi3_3 = FrobConst_psi_3 * FrobConst_psi2_3**p
print('FrobConst_psi3_2 : ' + fp2_to_hex(FrobConst_psi3_2))
print('FrobConst_psi3_3 : ' + fp2_to_hex(FrobConst_psi3_3))
# Recap, with ξ (xi) the sextic non-residue
# psi_2 = (ξ^((p-1)/6))^2 = ξ^((p-1)/3)
# psi_3 = psi_2 * ξ^((p-1)/6) = ξ^((p-1)/3) * ξ^((p-1)/6) = ξ^((p-1)/2)
#
# Reminder, in 𝔽p2, frobenius(a) = a^p = conj(a)
# psi2_2 = psi_2 * psi_2^p = ξ^((p-1)/3) * ξ^((p-1)/3)^p = ξ^((p-1)/3) * frobenius(ξ)^((p-1)/3)
# = norm(ξ)^((p-1)/3)
# psi2_3 = psi_3 * psi_3^p = ξ^((p-1)/2) * ξ^((p-1)/2)^p = ξ^((p-1)/2) * frobenius(ξ)^((p-1)/2)
# = norm(ξ)^((p-1)/2)
#
# In Fp²:
# - quadratic non-residues respect the equation a^((p²-1)/2) ≡ -1 (mod p²) by the Legendre symbol
# - sextic non-residues are also quadratic non-residues so ξ^((p²-1)/2) ≡ -1 (mod p²)
#
# We have norm(ξ)^((p-1)/2) = (ξ*frobenius(ξ))^((p-1)/2) = (ξ*(ξ^p))^((p-1)/2) = ξ^(p+1)^(p-1)/2
# = ξ^((p²-1)/2)
# And ξ^((p²-1)/2) ≡ -1 (mod p²)
# So psi2_3 ≡ -1 (mod p²)
#
# TODO: explain why psi3_2 = [0, -1]
# Frobenius Fp2
A = Fp2([5, 7])
Aconj = Fp2([5, -7])
AF = A.frobenius(1) # or pth_power(1)
AF2 = A.frobenius(2)
AF3 = A.frobenius(3)
print('')
print('A : ' + fp2_to_hex(A))
print('A conjugate: ' + fp2_to_hex(Aconj))
print('')
print('AF1 : ' + fp2_to_hex(AF))
print('AF2 : ' + fp2_to_hex(AF2))
print('AF3 : ' + fp2_to_hex(AF3))
def psi(P):
(Px, Py, Pz) = P
return G2([
FrobConst_psi_2 * Px.frobenius(),
FrobConst_psi_3 * Py.frobenius()
# Pz.frobenius() - Always 1 after extract
])
def psi2(P):
(Px, Py, Pz) = P
return G2([
FrobConst_psi2_2 * Px.frobenius(2),
FrobConst_psi2_3 * Py.frobenius(2)
# Pz - Always 1 after extract
])
# Test generator
set_random_seed(1337)
# Vectors
print('\nTest vectors:')
for i in range(4):
P = G2.random_point()
(Px, Py, Pz) = P
vPx = vector(Px)
vPy = vector(Py)
# Pz = vector(Pz)
print(f'\nTest {i}')
print(' Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex())
print(' Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex())
# Galbraith-Lin-Scott, 2008, Theorem 1
# Fuentes-Castaneda et al, 2011, Equation (2)
assert psi(psi(P)) - t*psi(P) + p*P == G2([0, 1, 0])
# Galbraith-Scott, 2008, Lemma 1
# k-th cyclotomic polynomial with k = 12
assert psi2(psi2(P)) - psi2(P) + P == G2([0, 1, 0])
assert psi(psi(P)) == psi2(P)
(Qx, Qy, Qz) = psi(P)
vQx = vector(Qx)
vQy = vector(Qy)
print(' Qx: ' + Integer(vQx[0]).hex() + ' + β * ' + Integer(vQx[1]).hex())
print(' Qy: ' + Integer(vQy[0]).hex() + ' + β * ' + Integer(vQy[1]).hex())