constantine/sage/derive_frobenius.sage

313 lines
10 KiB
Python

#!/usr/bin/sage
# vim: syntax=python
# vim: set ts=2 sw=2 et:
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Frobenius constants
#
# ############################################################
# Imports
# ---------------------------------------------------------
import os
import inspect, textwrap
# Working directory
# ---------------------------------------------------------
os.chdir(os.path.dirname(__file__))
# Sage imports
# ---------------------------------------------------------
# Accelerate arithmetic by accepting probabilistic proofs
from sage.structure.proof.all import arithmetic
arithmetic(False)
load('curves.sage')
# Utilities
# ---------------------------------------------------------
def fp2_to_hex(a):
v = vector(a)
return '0x' + Integer(v[0]).hex() + ' + β * ' + '0x' + Integer(v[1]).hex()
def field_to_nim(value, field, curve, prefix = "", comment_above = "", comment_right = ""):
result = '# ' + comment_above + '\n' if comment_above else ''
comment_right = ' # ' + comment_right if comment_right else ''
if field == 'Fp2':
v = vector(value)
result += inspect.cleandoc(f"""
{prefix}Fp2[{curve}].fromHex( {comment_right}
"0x{Integer(v[0]).hex()}",
"0x{Integer(v[1]).hex()}"
)""")
elif field == 'Fp':
result += inspect.cleandoc(f"""
{prefix}Fp[{curve}].fromHex( {comment_right}
"0x{Integer(value).hex()}")
""")
else:
raise NotImplementedError()
return result
# Code generators
# ---------------------------------------------------------
def genFrobeniusMapConstants(curve_name, curve_config):
embdeg = curve_config[curve_name]['tower']['embedding_degree']
twdeg = curve_config[curve_name]['tower']['twist_degree']
g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
p = curve_config[curve_name]['field']['modulus']
Fp = GF(p)
K.<u> = PolynomialRing(Fp)
if g2field == 'Fp2':
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
else:
SNR_Fp = curve_config[curve_name]['tower']['SNR_Fp']
Fp2.<beta> = Fp.extension(u^2 - SNR_Fp)
if g2field == 'Fp2':
SNR = curve_config[curve_name]['tower']['SNR_Fp2']
SNR = Fp2(SNR)
else:
# To build the Fp6 extension, since we use a SexticNonResidue
# to build Fp2, we can reuse it as a cubic non-residue
# It always has [0, 1] coordinates in Fp2
SNR = Fp2([0, 1])
halfK = embdeg//2
print('\n----> Frobenius extension field constants <----\n')
buf = inspect.cleandoc(f"""
# Frobenius map - on extension fields
# -----------------------------------------------------------------
# We start from base frobenius constant for a {embdeg} embedding degree.
# with
# - a sextic twist, SNR being the Sextic Non-Residue.
# - coef being the Frobenius coefficient "ID"
# c = SNR^((p-1)/{halfK})^coef
#
# On Fp2 frobenius(c) = conj(c) so we have
# For n=2, with n the number of Frobenius applications
# c2 = c * (c^p) = c * frobenius(c) = c * conj(c)
# c2 = (SNR * conj(SNR))^((p-1)/{halfK})^coef)
# c2 = (norm(SNR))^((p-1)/{halfK})^coef)
# For k=3
# c3 = c * c2^p = c * frobenius(c2) = c * conj(c2)
# with conj(norm(SNR)) = norm(SNR) as a norm is strictly on the base field.
# c3 = (SNR * norm(SNR))^((p-1)/{halfK})^coef)
#
# A more generic formula can be derived by observing that
# c3 = c * c2^p = c * (c * c^p)^p
# c3 = c * c^p * c^p²
# with 4, we have
# c4 = c * c3^p = c * (c * c^p * c^p²)^p
# c4 = c * c^p * c^p² * c^p³
# with n we have
# cn = c * c^p * c^p² ... * c^p^(n-1)
# cn = c^(1+p+p² + ... + p^(n-1))
# This is the sum of first n terms of a geometric series
# hence cn = c^((p^n-1)/(p-1))
# We now expand c
# cn = SNR^((p-1)/{halfK})^coef^((p^n-1)/(p-1))
# cn = SNR^((p^n-1)/{halfK})^coef
# cn = SNR^(coef * (p^n-1)/{halfK})
const {curve_name}_FrobeniusMapCoefficients* = [
""")
arr = ""
maxN = 3 # We only need up to f^(p^3) in final exponentiation
for n in range(1, maxN + 1):
for coef in range(halfK):
if coef == 0:
arr += f'\n# frobenius({n}) -----------------------\n'
arr += '['
frobmapcoef = SNR^(coef*((p^n-1)/halfK))
hatN = '^' + str(n) if n>1 else ''
arr += field_to_nim(frobmapcoef, 'Fp2', curve_name, comment_right = f'SNR^((p{hatN}-1)/{halfK})^{coef}')
if coef != halfK - 1:
arr += ',\n'
arr += '],\n'
buf += textwrap.indent(arr, ' ')
buf += ']'
return buf
def genFrobeniusPsiConstants(curve_name, curve_config):
embdeg = curve_config[curve_name]['tower']['embedding_degree']
twdeg = curve_config[curve_name]['tower']['twist_degree']
twkind = curve_config[curve_name]['tower']['twist']
g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
p = curve_config[curve_name]['field']['modulus']
Fp = GF(p)
K.<u> = PolynomialRing(Fp)
if g2field == 'Fp2':
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
if g2field == 'Fp2':
SNR = curve_config[curve_name]['tower']['SNR_Fp2']
SNR = Fp2(SNR)
else:
SNR = curve_config[curve_name]['tower']['SNR_Fp']
SNR = Fp(SNR)
print('\n----> ψ (Psi) - Untwist-Frobenius-Twist Endomorphism constants <----\n')
buf = inspect.cleandoc(f"""
# ψ (Psi) - Untwist-Frobenius-Twist Endomorphisms on twisted curves
# -----------------------------------------------------------------
""")
buf += '\n'
if twkind == 'D_Twist':
buf += f'# {curve_name} is a D-Twist: psi1_coef1 = SNR^((p-1)/{twdeg})\n\n'
xi = SNR
snrUsed = 'SNR'
else:
buf += f'# {curve_name} is a M-Twist: psi1_coef1 = (1/SNR)^((p-1)/{twdeg})\n\n'
xi = 1/SNR
snrUsed = '(1/SNR)'
maxPsi = CyclotomicField(embdeg).degree()
for n in range(1, maxPsi+1):
for coef in range(2, 3+1):
# Same formula as FrobeniusMap constants
# except that
# - we only need 2 coefs for elliptic curve twists
# - xi = SNR or 1/SNR depending on D-Twist or M-Twist respectively
# - the divisor is the twist degree isntead of half the embedding degree
frobpsicoef = xi^(coef*(p^n - 1)/twdeg)
hatN = '^' + str(n) if n>1 else ''
buf += field_to_nim(
frobpsicoef, g2field, curve_name,
prefix = f'const {curve_name}_FrobeniusPsi_psi{n}_coef{coef}* = ',
comment_above = f'{snrUsed}^({coef}(p{hatN}-1)/{twdeg})'
) + '\n'
buf += '\n'
buf += inspect.cleandoc(f"""
# For a sextic twist
# - p ≡ 1 (mod 2)
# - p ≡ 1 (mod 3)
#
# psi2_coef3 is always -1 (mod p^m) with m = embdeg/twdeg
# Recap, with ξ (xi) the sextic non-residue for D-Twist or 1/SNR for M-Twist
# psi_2 ≡ ξ^((p-1)/6)^2 ≡ ξ^((p-1)/3)
# psi_3 ≡ psi_2 * ξ^((p-1)/6) ≡ ξ^((p-1)/3) * ξ^((p-1)/6) ≡ ξ^((p-1)/2)
#
# In Fp² (i.e. embedding degree of 12, G2 on Fp2)
# - quadratic non-residues respect the equation a^((p²-1)/2) ≡ -1 (mod p²) by the Legendre symbol
# - sextic non-residues are also quadratic non-residues so ξ^((p²-1)/2) ≡ -1 (mod p²)
# - QRT(1/a) = QRT(a) with QRT the quadratic residuosity test
#
# We have psi2_3 ≡ psi_3 * psi_3^p ≡ psi_3^(p+1)
# ≡ (ξ^(p-1)/2)^(p+1) (mod p²)
# ≡ ξ^((p-1)(p+1)/2) (mod p²)
# ≡ ξ^((p²-1)/2) (mod p²)
# And ξ^((p²-1)/2) ≡ -1 (mod p²) since ξ is a quadratic non-residue
# So psi2_3 ≡ -1 (mod p²)
#
#
# In Fp (i.e. embedding degree of 6, G2 on Fp)
# - Fermat's Little Theorem gives us a^(p-1) ≡ 1 (mod p)
#
# psi2_3 ≡ ξ^((p-1)(p+1)/2) (mod p)
# ≡ ξ^((p+1)/2)^(p-1) (mod p) as we have 2|p+1
# ≡ 1 (mod p) by Fermat's Little Theorem
""")
return buf
# CLI
# ---------------------------------------------------------
if __name__ == "__main__":
# Usage
# BLS12-381
# sage sage/derive_frobenius.sage BLS12_381
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("curve",nargs="+")
args = parser.parse_args()
curve = args.curve[0]
if curve not in Curves:
raise ValueError(
curve +
' is not one of the available curves: ' +
str(Curves.keys())
)
else:
trace = Curves[curve]['field']['trace']
print(f'trace of Frobenius ({int(trace).bit_length()}-bit): 0x{Integer(trace).hex()}')
FrobMap = genFrobeniusMapConstants(curve, Curves)
FrobPsi = genFrobeniusPsiConstants(curve, Curves)
with open(f'{curve.lower()}_frobenius.nim', 'w') as f:
f.write(copyright())
f.write('\n\n')
embdeg = Curves[curve]['tower']['embedding_degree']
twdeg = Curves[curve]['tower']['twist_degree']
if embdeg//twdeg >= 2:
f.write(inspect.cleandoc("""
import
../config/curves,
../extension_fields,
../io/io_extfields
"""))
else:
f.write(inspect.cleandoc("""
import
../config/curves,
../extension_fields,
../io/[io_fields, io_extfields]
"""))
f.write('\n\n')
f.write(FrobMap)
f.write('\n\n')
f.write(FrobPsi)
print(f'Successfully created {curve}_frobenius.nim')
print(inspect.cleandoc("""\n
For testing you can verify the following invariants:
Galbraith-Lin-Scott, 2008, Theorem 1
Fuentes-Castaneda et al, 2011, Equation (2)
ψ(ψ(P)) - t*ψ(P) + p*P == Infinity
Galbraith-Scott, 2008, Lemma 1
The cyclotomic polynomial with GΦ(ψ(P)) == Infinity
Hence for embedding degree k=12
ψ⁴(P) - ψ²(P) + P == Infinity
for embedding degree k=6
ψ²(P) - ψ(P) + P == Infinity
"""))