# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import ../constantine/[arithmetic, primitives], ../constantine/io/[io_fields], ../constantine/config/[curves, common], # Test utilities ../helpers/prng, # Standard library std/tables, std/unittest, std/times const Iters = 128 var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "test_finite_fields_sqrt xoshiro512** seed: ", seed static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option" proc exhaustiveCheck_p3mod4(C: static Curve, modulus: static int) = test "Exhaustive square root check for p ≡ 3 (mod 4) on " & $Curve(C): var squares_to_roots: Table[uint16, set[uint16]] # Create all squares # ------------------------- for i in 0'u16 ..< modulus: var a{.noInit.}: Fp[C] a.fromUint(i) a.square() var r_bytes: array[8, byte] r_bytes.exportRawUint(a, cpuEndian) let r = uint16(cast[uint64](r_bytes)) squares_to_roots.mgetOrPut(r, default(set[uint16])).incl(i) # From Euler's criterion # there is exactly (p-1)/2 squares in 𝔽p* (without 0) # and so (p-1)/2 + 1 in 𝔽p (with 0) check: squares_to_roots.len == (modulus-1) div 2 + 1 # Check squares # ------------------------- for i in 0'u16 ..< modulus: var a{.noInit.}: Fp[C] a.fromUint(i) if i in squares_to_roots: var a2 = a check: bool a.isSquare() bool a.sqrt_if_square_p3mod4() # 2 different code paths have the same result # (despite 2 square roots existing per square) a2.sqrt_p3mod4() check: bool(a == a2) var r_bytes: array[8, byte] r_bytes.exportRawUint(a, cpuEndian) let r = uint16(cast[uint64](r_bytes)) # r is one of the 2 square roots of `i` check: r in squares_to_roots[i] else: let a2 = a check: bool not a.isSquare() bool not a.sqrt_if_square_p3mod4() bool (a == a2) # a shouldn't be modified proc randomSqrtCheck_p3mod4(C: static Curve) = test "Random square root check for p ≡ 3 (mod 4) on " & $Curve(C): for _ in 0 ..< Iters: let a = rng.random(Fp[C]) var na{.noInit.}: Fp[C] na.neg(a) var a2 = a var na2 = na a2.square() na2.square() check: bool a2 == na2 bool a2.isSquare() var r, s = a2 r.sqrt_p3mod4() let ok = s.sqrt_if_square_p3mod4() check: bool ok bool(r == s) bool(r == a or r == na) proc main() = suite "Modular square root": exhaustiveCheck_p3mod4 Fake103, 103 exhaustiveCheck_p3mod4 Fake10007, 10007 exhaustiveCheck_p3mod4 Fake65519, 65519 randomSqrtCheck_p3mod4 Mersenne61 randomSqrtCheck_p3mod4 Mersenne127 randomSqrtCheck_p3mod4 BN254_Nogami randomSqrtCheck_p3mod4 BN254_Snarks randomSqrtCheck_p3mod4 P256 randomSqrtCheck_p3mod4 Secp256k1 randomSqrtCheck_p3mod4 BLS12_381 randomSqrtCheck_p3mod4 BN446 randomSqrtCheck_p3mod4 FKM12_447 randomSqrtCheck_p3mod4 BLS12_461 randomSqrtCheck_p3mod4 BN462 main()