# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # Benchmark of pairings # # ############################################################ import # Internals ../constantine/config/[curves, common], ../constantine/arithmetic, ../constantine/io/io_bigints, ../constantine/towers, ../constantine/elliptic/[ec_shortweierstrass_projective, ec_shortweierstrass_affine], ../constantine/hash_to_curve/cofactors, ../constantine/pairing/[ cyclotomic_fp12, lines_projective, mul_fp12_by_lines, pairing_bls12, pairing_bn ], # Helpers ../helpers/[prng_unsafe, static_for], ./platforms, # Standard library std/[monotimes, times, strformat, strutils, macros] var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "bench xoshiro512** seed: ", seed # warmup proc warmup*() = # Warmup - make sure cpu is on max perf let start = cpuTime() var foo = 123 for i in 0 ..< 300_000_000: foo += i*i mod 456 foo = foo mod 789 # Compiler shouldn't optimize away the results as cpuTime rely on sideeffects let stop = cpuTime() echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n" warmup() when defined(gcc): echo "\nCompiled with GCC" elif defined(clang): echo "\nCompiled with Clang" elif defined(vcc): echo "\nCompiled with MSVC" elif defined(icc): echo "\nCompiled with ICC" else: echo "\nCompiled with an unknown compiler" echo "Optimization level => " echo " no optimization: ", not defined(release) echo " release: ", defined(release) echo " danger: ", defined(danger) echo " inline assembly: ", UseASM_X86_64 when (sizeof(int) == 4) or defined(Constantine32): echo "⚠️ Warning: using Constantine with 32-bit limbs" else: echo "Using Constantine with 64-bit limbs" when SupportsCPUName: echo "Running on ", cpuName(), "" when SupportsGetTicks: echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them." echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)" echo "\n=================================================================================================================\n" proc separator*() = echo "-".repeat(177) proc report(op, curve: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) = let ns = inNanoseconds((stop-start) div iters) let throughput = 1e9 / float64(ns) when SupportsGetTicks: echo &"{op:<60} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)" else: echo &"{op:<60} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op" proc notes*() = echo "Notes:" echo " - Compilers:" echo " Compilers are severely limited on multiprecision arithmetic." echo " Constantine compile-time assembler is used by default (nimble bench_fp)." echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries." echo " GCC also seems to have issues with large temporaries and register spilling." echo " This is somewhat alleviated by Constantine compile-time assembler." echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc\" or \"nimble bench_ec_g1_clang\"." echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc_noasm\" or \"nimble bench_ec_g1_clang_noasm\"." echo " - The simplest operations might be optimized away by the compiler." echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)" template bench(op: string, C: static Curve, iters: int, body: untyped): untyped = let start = getMonotime() when SupportsGetTicks: let startClk = getTicks() for _ in 0 ..< iters: body when SupportsGetTicks: let stopClk = getTicks() let stop = getMonotime() when not SupportsGetTicks: let startClk = -1'i64 let stopClk = -1'i64 report(op, $C, start, stop, startClk, stopClk, iters) func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} = result = rng.random_unsafe(EC) result.clearCofactorReference() proc lineDoubleBench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) let P = rng.random_point(ECP_ShortW_Proj[Fp[C], NotOnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Paff.affineFromProjective(P) bench("Line double", C, iters): line.line_double(T, Paff) proc lineAddBench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) let P = rng.random_point(ECP_ShortW_Proj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Qaff: ECP_ShortW_Aff[Fp2[C], OnTwist] Paff.affineFromProjective(P) Qaff.affineFromProjective(Q) bench("Line add", C, iters): line.line_add(T, Qaff, Paff) proc mulFp12byLine_xyz000_Bench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) let P = rng.random_point(ECP_ShortW_Proj[Fp[C], NotOnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Paff.affineFromProjective(P) line.line_double(T, Paff) var f = rng.random_unsafe(Fp12[C]) bench("Mul 𝔽p12 by line xyz000", C, iters): f.mul_sparse_by_line_xyz000(line) proc mulFp12byLine_xy000z_Bench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) let P = rng.random_point(ECP_ShortW_Proj[Fp[C], NotOnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Paff.affineFromProjective(P) line.line_double(T, Paff) var f = rng.random_unsafe(Fp12[C]) bench("Mul 𝔽p12 by line xy000z", C, iters): f.mul_sparse_by_line_xy000z(line) proc millerLoopBLS12Bench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Proj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Qaff: ECP_ShortW_Aff[Fp2[C], OnTwist] Paff.affineFromProjective(P) Qaff.affineFromProjective(Q) var f: Fp12[C] bench("Miller Loop BLS12", C, iters): f.millerLoopGenericBLS12(Paff, Qaff) proc millerLoopBNBench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Proj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Qaff: ECP_ShortW_Aff[Fp2[C], OnTwist] Paff.affineFromProjective(P) Qaff.affineFromProjective(Q) var f: Fp12[C] bench("Miller Loop BN", C, iters): f.millerLoopGenericBN(Paff, Qaff) proc finalExpEasyBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation Easy", C, iters): r.finalExpEasy() proc finalExpHardBLS12Bench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) r.finalExpEasy() bench("Final Exponentiation Hard BLS12", C, iters): r.finalExpHard_BLS12() proc finalExpHardBNBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) r.finalExpEasy() bench("Final Exponentiation Hard BN", C, iters): r.finalExpHard_BN() proc finalExpBLS12Bench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation BLS12", C, iters): r.finalExpEasy() r.finalExpHard_BLS12() proc finalExpBNBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation BN", C, iters): r.finalExpEasy() r.finalExpHard_BN() proc pairingBLS12Bench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Proj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) var f: Fp12[C] bench("Pairing BLS12", C, iters): f.pairing_bls12(P, Q) proc pairingBNBench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Proj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Proj[Fp2[C], OnTwist]) var f: Fp12[C] bench("Pairing BN", C, iters): f.pairing_bn(P, Q)