# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import # Internals ../constantine/config/curves, ../constantine/arithmetic, ../constantine/towers, ../constantine/elliptic/ec_weierstrass_projective, # Helpers ../helpers/static_for, ./bench_elliptic_template, # Standard library std/strutils # ############################################################ # # Benchmark of the G1 group of # Short Weierstrass elliptic curves # in (homogeneous) projective coordinates # # ############################################################ const Iters = 500_000 const MulIters = 500 const AvailableCurves = [ # P224, # BN254_Nogami, BN254_Snarks, # Curve25519, # P256, # Secp256k1, # BLS12_377, BLS12_381, # BN446, # FKM12_447, # BLS12_461, # BN462 ] proc main() = separator() staticFor i, 0, AvailableCurves.len: const curve = AvailableCurves[i] addBench(ECP_SWei_Proj[Fp2[curve]], Iters) separator() doublingBench(ECP_SWei_Proj[Fp2[curve]], Iters) separator() scalarMulUnsafeDoubleAddBench(ECP_SWei_Proj[Fp2[curve]], MulIters) separator() scalarMulGenericBench(ECP_SWei_Proj[Fp2[curve]], scratchSpaceSize = 1 shl 2, MulIters) separator() scalarMulGenericBench(ECP_SWei_Proj[Fp2[curve]], scratchSpaceSize = 1 shl 3, MulIters) separator() scalarMulGenericBench(ECP_SWei_Proj[Fp2[curve]], scratchSpaceSize = 1 shl 4, MulIters) separator() # scalarMulEndo(ECP_SWei_Proj[Fp2[curve]], MulIters) # separator() separator() main() echo "\nNotes:" echo " - GCC is significantly slower than Clang on multiprecision arithmetic." echo " - The simplest operations might be optimized away by the compiler." echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"