Rebrand to Constantine. Bigints representation should stay opaque. Exporting just the word_types would make a super small library.

This commit is contained in:
mratsim 2018-12-01 20:12:05 +01:00
parent cae9f743d3
commit eb15fb33b5
9 changed files with 251 additions and 263 deletions

View File

@ -1,4 +1,4 @@
hardy is licensed under the Apache License version 2
constantine is licensed under the Apache License version 2
Copyright (c) 2018 Status Research & Development GmbH
-----------------------------------------------------

View File

@ -1,4 +1,4 @@
hardy is licensed under the MIT License
constantine is licensed under the MIT License
Copyright (c) 2018 Status Research & Development GmbH
-----------------------------------------------------

View File

@ -1,19 +1,19 @@
# Hardy - Hardened big int primitives
# Constantine - Constant time finitie field primitives for Elliptic Curve Cryptography
[![Build Status (Travis)](https://img.shields.io/travis/status-im/nim-hardy/master.svg?label=Linux%20/%20macOS "Linux/macOS build status (Travis)")](https://travis-ci.org/status-im/nim-hardy)
[![Windows build status (Appveyor)](https://img.shields.io/appveyor/ci/nimbus/nim-hardy/master.svg?label=Windows "Windows build status (Appveyor)")](https://ci.appveyor.com/project/nimbus/nim-hardy)
[![Build Status (Travis)](https://img.shields.io/travis/status-im/nim-constantine/master.svg?label=Linux%20/%20macOS "Linux/macOS build status (Travis)")](https://travis-ci.org/status-im/nim-constantine)
[![Windows build status (Appveyor)](https://img.shields.io/appveyor/ci/nimbus/nim-constantine/master.svg?label=Windows "Windows build status (Appveyor)")](https://ci.appveyor.com/project/nimbus/nim-constantine)
[![License: Apache](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
![Stability: experimental](https://img.shields.io/badge/stability-experimental-orange.svg)
This library provides constant time big int primitives.
This library provides constant time finite field primitives.
The main use will be for implementation of elliptic curve cryptography
## Installation
You can install the developement version of the library through nimble with the following command
```
nimble install https://github.com/status-im/nim-hardy@#master
nimble install https://github.com/status-im/nim-constantine@#master
```
## License

View File

@ -1,10 +1,6 @@
# Hardy
# Constantine
# Copyright (c) 2018 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import hardy/[ct_primitives, datatypes]
export ct_primitives, datatypes

View File

@ -1,4 +1,4 @@
packageName = "hardy"
packageName = "constantine"
version = "0.0.1"
author = "Status Research & Development GmbH"
description = "This library provides constant time big int primitives."

View File

@ -1,11 +1,34 @@
# Hardy
# Constantine
# Copyright (c) 2018 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import ./datatypes
type
BaseUint* = SomeUnsignedInt or byte
Ct*[T: BaseUint] = distinct T
CTBool*[T: Ct] = distinct range[T(0)..T(1)]
## To avoid the compiler replacing bitwise boolean operations
## by conditional branches, we don't use booleans.
## We use an int to prevent compiler "optimization" and introduction of branches
func ctrue*(T: type(BaseUint)): auto {.inline.}=
(CTBool[Ct[T]])(true)
func cfalse*(T: type(BaseUint)): auto {.inline.}=
(CTBool[Ct[T]])(false)
func ct*[T: BaseUint](x: T): Ct[T] {.inline.}=
(Ct[T])(x)
func `$`*[T](x: Ct[T]): string {.inline.} =
$T(x)
func `$`*(x: CTBool): string {.inline.} =
$bool(x)
# #########################
#
@ -22,7 +45,7 @@ import ./datatypes
# does not guarantee a constant-time conditional move
# The compiler might introduce branching.
# These primitives are distinct type and internal to Hardy.
# These primitives are distinct type and internal to Constantine.
# We don't want to pollute unsuspecting users
# with `not` and `-` on unsigned ints
@ -32,26 +55,26 @@ import ./datatypes
# - https://github.com/nim-lang/Nim/pull/8531
# - https://github.com/nim-lang/Nim/issues/4121 (can be workaround with #8531)
func high*(T: typedesc[HardBase]): T {.inline.}=
func high*(T: typedesc[Ct]): T {.inline.}=
not T(0)
func `and`*[T: HardBase](x, y: T): T {.magic: "BitandI".}
func `or`*[T: HardBase](x, y: T): T {.magic: "BitorI".}
func `xor`*[T: HardBase](x, y: T): T {.magic: "BitxorI".}
func `not`*[T: HardBase](x: T): T {.magic: "BitnotI".}
func `+`*[T: HardBase](x, y: T): T {.magic: "AddU".}
func `-`*[T: HardBase](x, y: T): T {.magic: "SubU".}
func `shr`*[T: HardBase](x: T, y: SomeInteger): T {.magic: "ShrI".}
func `shl`*[T: HardBase](x: T, y: SomeInteger): T {.magic: "ShlI".}
func `and`*[T: Ct](x, y: T): T {.magic: "BitandI".}
func `or`*[T: Ct](x, y: T): T {.magic: "BitorI".}
func `xor`*[T: Ct](x, y: T): T {.magic: "BitxorI".}
func `not`*[T: Ct](x: T): T {.magic: "BitnotI".}
func `+`*[T: Ct](x, y: T): T {.magic: "AddU".}
func `-`*[T: Ct](x, y: T): T {.magic: "SubU".}
func `shr`*[T: Ct](x: T, y: SomeInteger): T {.magic: "ShrI".}
func `shl`*[T: Ct](x: T, y: SomeInteger): T {.magic: "ShlI".}
func `*`*[T: HardBase](x, y: T): T {.magic: "MulU".}
func `*`*[T: Ct](x, y: T): T {.magic: "MulU".}
# Warning ⚠️ : We assume that mul hardware multiplication is constant time
# but this is not always true, especially on ARMv7 and ARMv9
# We don't implement div/mod as we can't assume the hardware implementation
# is constant-time
func `-`*(x: HardBase): HardBase {.inline.}=
func `-`*(x: Ct): Ct {.inline.}=
## Unary minus returns the two-complement representation
## of an unsigned integer
{.emit:"`result` = -`x`;".}
@ -62,10 +85,10 @@ func `-`*(x: HardBase): HardBase {.inline.}=
#
# ############################################################
func isMsbSet*[T: HardBase](x: T): HardBool[T] {.inline.} =
func isMsbSet*[T: Ct](x: T): CTBool[T] {.inline.} =
## Returns the most significant bit of an integer
const msb_pos = T.sizeof * 8 - 1
result = (HardBool[T])(x shr msb_pos)
result = (CTBool[T])(x shr msb_pos)
# ############################################################
#
@ -73,14 +96,14 @@ func isMsbSet*[T: HardBase](x: T): HardBool[T] {.inline.} =
#
# ############################################################
template undistinct[T: HardBase](x: HardBool[T]): T =
template undistinct[T: Ct](x: CTBool[T]): T =
T(x)
func `not`*(ctl: HardBool): HardBool {.inline.}=
func `not`*(ctl: CTBool): CTBool {.inline.}=
## Negate a constant-time boolean
(type result)(ctl.undistinct xor (type ctl.undistinct)(1))
template mux*[T: HardBase](ctl: HardBool[T], x, y: T): T =
template mux*[T: Ct](ctl: CTBool[T], x, y: T): T =
## Multiplexer / selector
## Returns x if ctl == 1
## else returns y
@ -92,22 +115,22 @@ template mux*[T: HardBase](ctl: HardBool[T], x, y: T): T =
# the alternative `(x and ctl) or (y and -ctl)`
# is optimized into a branch by Clang :/
func noteq[T: HardBase](x, y: T): HardBool[T] {.inline.}=
func noteq[T: Ct](x, y: T): CTBool[T] {.inline.}=
const msb = T.sizeof * 8 - 1
let z = x xor y
result = (type result)((z or -z) shr msb)
func `==`*[T: HardBase](x, y: T): HardBool[T] {.inline.}=
func `==`*[T: Ct](x, y: T): CTBool[T] {.inline.}=
not(noteq(x, y))
func `<`*[T: HardBase](x, y: T): HardBool[T] {.inline.}=
func `<`*[T: Ct](x, y: T): CTBool[T] {.inline.}=
result = isMsbSet(
x xor (
(x xor y) or ((x - y) xor y)
)
)
func `<=`*[T: HardBase](x, y: T): HardBool[T] {.inline.}=
func `<=`*[T: Ct](x, y: T): CTBool[T] {.inline.}=
not(y < x)
# ############################################################
@ -120,7 +143,7 @@ func `<=`*[T: HardBase](x, y: T): HardBool[T] {.inline.}=
# in terms of `==` while we define `==` in terms of `!=`
# So we would have not(not(noteq(x,y)))
template trmFixSystemNotEq*{x != y}[T: HardBase](x, y: T): HardBool[T] =
template trmFixSystemNotEq*{x != y}[T: Ct](x, y: T): CTBool[T] =
noteq(x, y)
# ############################################################
@ -129,10 +152,10 @@ template trmFixSystemNotEq*{x != y}[T: HardBase](x, y: T): HardBool[T] =
#
# ############################################################
func isNonZero*[T: HardBase](x: T): HardBool[T] {.inline.} =
func isNonZero*[T: Ct](x: T): CTBool[T] {.inline.} =
isMsbSet(x or -x)
func isZero*[T: HardBase](x: T): HardBool[T] {.inline.} =
func isZero*[T: Ct](x: T): CTBool[T] {.inline.} =
not x.isNonZero
# ############################################################
@ -142,7 +165,7 @@ func isZero*[T: HardBase](x: T): HardBool[T] {.inline.} =
#
# ############################################################
template trmIsZero*{x == 0}[T: HardBase](x: T): HardBool[T] = x.isZero
template trmIsZero*{0 == x}[T: HardBase](x: T): HardBool[T] = x.isZero
template trmIsNonZero*{x != 0}[T: HardBase](x: T): HardBool[T] = x.isNonZero
template trmIsNonZero*{0 != x}[T: HardBase](x: T): HardBool[T] = x.isNonZero
template trmIsZero*{x == 0}[T: Ct](x: T): CTBool[T] = x.isZero
template trmIsZero*{0 == x}[T: Ct](x: T): CTBool[T] = x.isZero
template trmIsNonZero*{x != 0}[T: Ct](x: T): CTBool[T] = x.isNonZero
template trmIsNonZero*{0 != x}[T: Ct](x: T): CTBool[T] = x.isNonZero

View File

@ -1,40 +0,0 @@
# Hardy
# Copyright (c) 2018 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
type
BaseUint* = SomeUnsignedInt or byte
HardBase*[T: BaseUint] = distinct T
HardBool*[T: HardBase] = distinct range[T(0)..T(1)]
## To avoid the compiler replacing bitwise boolean operations
## by conditional branches, we don't use booleans.
## We use an int to prevent compiler "optimization" and introduction of branches
Hard*[T: HardBase] = distinct openarray[T]
## Hardy primitives are memory-backend agnostic.
## Hardy integers can be stored in an opaque stack array
## or a seq or even a string.
##
## Allocations is left to the client library.
## Note that constant-time allocation is very involved for
## heap-allocated types (i.e. requires a memory pool)
func htrue*(T: type(BaseUint)): auto {.inline.}=
(HardBool[HardBase[T]])(true)
func hfalse*(T: type(BaseUint)): auto {.inline.}=
(HardBool[HardBase[T]])(false)
func hard*[T: BaseUint](x: T): HardBase[T] {.inline.}=
(HardBase[T])(x)
func `$`*[T](x: HardBase[T]): string {.inline.} =
$T(x)
func `$`*(x: HardBool): string {.inline.} =
$bool(x)

View File

@ -1,186 +1,9 @@
# hardy
# constantine
# Copyright (c) 2018 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import unittest, random, math,
../hardy
# Random seed for reproducibility
randomize(0xDEADBEEF)
template undistinct[T](x: HardBase[T]): T =
T(x)
suite "Hardened unsigned integers":
test "High - getting the biggest representable number":
check:
high(HardBase[byte]).undistinct == 0xFF.byte
high(HardBase[uint8]).undistinct == 0xFF.uint8
high(HardBase[uint16]).undistinct == 0xFFFF.uint16
high(HardBase[uint32]).undistinct == 0xFFFFFFFF.uint32
high(HardBase[uint64]).undistinct == 0xFFFFFFFF_FFFFFFFF.uint64
test "bitwise `and`, `or`, `xor`, `not`":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
template bitwise_check(op: untyped): untyped =
block:
check:
op(hard(0'u32), hard(0'u32)).undistinct == op(0'u32, 0'u32)
op(hard(0'u32), hard(1'u32)).undistinct == op(0'u32, 1'u32)
op(hard(1234'u64), hard(5678'u64)).undistinct == op(1234'u64, 5678'u64)
op(x1.hard, y1.hard).undistinct == op(x1, y1)
op(x2.hard, y2.hard).undistinct == op(x2, y2)
op(x3.hard, y3.hard).undistinct == op(x3, y3)
bitwise_check(`and`)
bitwise_check(`or`)
bitwise_check(`xor`)
block:
check:
not(hard(0'u32)).undistinct == not 0'u32
not(hard(1'u32)).undistinct == not 1'u32
not(hard(1234'u64)).undistinct == not 1234'u64
not(hard(5678'u64)).undistinct == not 5678'u64
not(hard(x1)).undistinct == not x1
not(hard(x2)).undistinct == not x2
not(hard(x3)).undistinct == not x3
not(hard(y1)).undistinct == not y1
not(hard(y2)).undistinct == not y2
not(hard(y3)).undistinct == not y3
test "Logical shifts":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int32)).uint64
let x3 = rand(high(int32)).uint64
let y3 = rand(high(int32)).uint64
let s1 = rand(10)
let s2 = rand(10)
let s3 = rand(10)
template shift_check(op: untyped): untyped =
block:
check:
op(hard(0'u32), 1).undistinct == op(0'u32, 1)
op(hard(1'u32), 2).undistinct == op(1'u32, 2)
op(hard(1234'u64), 3).undistinct == op(1234'u64, 3)
op(hard(2'u64^30), 1).undistinct == op(2'u64^30, 1)
op(hard(2'u64^31 + 1), 1).undistinct == op(2'u64^31 + 1, 1)
op(hard(2'u64^32), 1).undistinct == op(2'u64^32, 1)
op(x1.hard, s1).undistinct == op(x1, s1)
op(x2.hard, s2).undistinct == op(x2, s2)
op(x3.hard, s3).undistinct == op(x3, s3)
op(y1.hard, s1).undistinct == op(y1, s1)
op(y2.hard, s2).undistinct == op(y2, s2)
op(y3.hard, s3).undistinct == op(y3, s3)
shift_check(`shl`)
shift_check(`shr`)
test "Operators `+`, `-`, `*`":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
template operator_check(op: untyped): untyped =
block:
check:
op(hard(0'u32), hard(0'u32)).undistinct == op(0'u32, 0'u32)
op(hard(0'u32), hard(1'u32)).undistinct == op(0'u32, 1'u32)
op(hard(1234'u64), hard(5678'u64)).undistinct == op(1234'u64, 5678'u64)
op(x1.hard, y1.hard).undistinct == op(x1, y1)
op(x2.hard, y2.hard).undistinct == op(x2, y2)
op(x3.hard, y3.hard).undistinct == op(x3, y3)
operator_check(`+`)
operator_check(`-`)
operator_check(`*`)
test "Unary `-`, returning the 2-complement of an unsigned integer":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
check:
(-hard(0'u32)).undistinct == 0
(-high(HardBase[uint32])).undistinct == 1'u32
(-hard(0x80000000'u32)).undistinct == 0x80000000'u32 # This is low(int32) == 0b10000..0000
undistinct(-x1.hard) == undistinct(not(x1.hard) + hard(1'u64))
undistinct(-x2.hard) == undistinct(not(x2.hard) + hard(1'u64))
undistinct(-x3.hard) == undistinct(not(x3.hard) + hard(1'u64))
undistinct(-y1.hard) == undistinct(not(y1.hard) + hard(1'u64))
undistinct(-y2.hard) == undistinct(not(y2.hard) + hard(1'u64))
undistinct(-y3.hard) == undistinct(not(y3.hard) + hard(1'u64))
suite "Hardened booleans":
test "Boolean not":
check:
not(htrue(uint32)).bool == false
not(hfalse(uint32)).bool == true
test "Comparison":
check:
bool(hard(0'u32) != hard(0'u32)) == false
bool(hard(0'u32) != hard(1'u32)) == true
bool(hard(10'u32) == hard(10'u32)) == true
bool(hard(10'u32) != hard(20'u32)) == true
bool(hard(10'u32) <= hard(10'u32)) == true
bool(hard(10'u32) <= hard(20'u32)) == true
bool(hard(10'u32) <= hard(5'u32)) == false
bool(hard(10'u32) <= hard(0xFFFFFFFF'u32)) == true
bool(hard(10'u32) < hard(10'u32)) == false
bool(hard(10'u32) < hard(20'u32)) == true
bool(hard(10'u32) < hard(5'u32)) == false
bool(hard(10'u32) < hard(0xFFFFFFFF'u32)) == true
bool(hard(10'u32) > hard(10'u32)) == false
bool(hard(10'u32) > hard(20'u32)) == false
bool(hard(10'u32) > hard(5'u32)) == true
bool(hard(10'u32) > hard(0xFFFFFFFF'u32)) == false
bool(hard(10'u32) >= hard(10'u32)) == true
bool(hard(10'u32) >= hard(20'u32)) == false
bool(hard(10'u32) >= hard(5'u32)) == true
bool(hard(10'u32) >= hard(0xFFFFFFFF'u32)) == false
test "Multiplexer/selector - mux(ctl, x, y) <=> ctl? x: y":
let u = 10'u32.hard
let v = 20'u32.hard
let w = 5'u32.hard
let y = htrue(uint32)
let n = hfalse(uint32)
check:
bool(mux(y, u, v) == u)
bool(mux(n, u, v) == v)
bool(mux(y, u, w) == u)
bool(mux(n, u, w) == w)
bool(mux(y, v, w) == v)
bool(mux(n, v, w) == w)
import
test_word_types

186
tests/test_word_types.nim Normal file
View File

@ -0,0 +1,186 @@
# constantine
# Copyright (c) 2018 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import unittest, random, math,
../constantine/word_types
# Random seed for reproducibility
randomize(0xDEADBEEF)
template undistinct[T](x: Ct[T]): T =
T(x)
suite "Constant-time unsigned integers":
test "High - getting the biggest representable number":
check:
high(Ct[byte]).undistinct == 0xFF.byte
high(Ct[uint8]).undistinct == 0xFF.uint8
high(Ct[uint16]).undistinct == 0xFFFF.uint16
high(Ct[uint32]).undistinct == 0xFFFFFFFF.uint32
high(Ct[uint64]).undistinct == 0xFFFFFFFF_FFFFFFFF.uint64
test "bitwise `and`, `or`, `xor`, `not`":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
template bitwise_check(op: untyped): untyped =
block:
check:
op(ct(0'u32), ct(0'u32)).undistinct == op(0'u32, 0'u32)
op(ct(0'u32), ct(1'u32)).undistinct == op(0'u32, 1'u32)
op(ct(1234'u64), ct(5678'u64)).undistinct == op(1234'u64, 5678'u64)
op(x1.ct, y1.ct).undistinct == op(x1, y1)
op(x2.ct, y2.ct).undistinct == op(x2, y2)
op(x3.ct, y3.ct).undistinct == op(x3, y3)
bitwise_check(`and`)
bitwise_check(`or`)
bitwise_check(`xor`)
block:
check:
not(ct(0'u32)).undistinct == not 0'u32
not(ct(1'u32)).undistinct == not 1'u32
not(ct(1234'u64)).undistinct == not 1234'u64
not(ct(5678'u64)).undistinct == not 5678'u64
not(ct(x1)).undistinct == not x1
not(ct(x2)).undistinct == not x2
not(ct(x3)).undistinct == not x3
not(ct(y1)).undistinct == not y1
not(ct(y2)).undistinct == not y2
not(ct(y3)).undistinct == not y3
test "Logical shifts":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int32)).uint64
let x3 = rand(high(int32)).uint64
let y3 = rand(high(int32)).uint64
let s1 = rand(10)
let s2 = rand(10)
let s3 = rand(10)
template shift_check(op: untyped): untyped =
block:
check:
op(ct(0'u32), 1).undistinct == op(0'u32, 1)
op(ct(1'u32), 2).undistinct == op(1'u32, 2)
op(ct(1234'u64), 3).undistinct == op(1234'u64, 3)
op(ct(2'u64^30), 1).undistinct == op(2'u64^30, 1)
op(ct(2'u64^31 + 1), 1).undistinct == op(2'u64^31 + 1, 1)
op(ct(2'u64^32), 1).undistinct == op(2'u64^32, 1)
op(x1.ct, s1).undistinct == op(x1, s1)
op(x2.ct, s2).undistinct == op(x2, s2)
op(x3.ct, s3).undistinct == op(x3, s3)
op(y1.ct, s1).undistinct == op(y1, s1)
op(y2.ct, s2).undistinct == op(y2, s2)
op(y3.ct, s3).undistinct == op(y3, s3)
shift_check(`shl`)
shift_check(`shr`)
test "Operators `+`, `-`, `*`":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
template operator_check(op: untyped): untyped =
block:
check:
op(ct(0'u32), ct(0'u32)).undistinct == op(0'u32, 0'u32)
op(ct(0'u32), ct(1'u32)).undistinct == op(0'u32, 1'u32)
op(ct(1234'u64), ct(5678'u64)).undistinct == op(1234'u64, 5678'u64)
op(x1.ct, y1.ct).undistinct == op(x1, y1)
op(x2.ct, y2.ct).undistinct == op(x2, y2)
op(x3.ct, y3.ct).undistinct == op(x3, y3)
operator_check(`+`)
operator_check(`-`)
operator_check(`*`)
test "Unary `-`, returning the 2-complement of an unsigned integer":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
check:
(-ct(0'u32)).undistinct == 0
(-high(Ct[uint32])).undistinct == 1'u32
(-ct(0x80000000'u32)).undistinct == 0x80000000'u32 # This is low(int32) == 0b10000..0000
undistinct(-x1.ct) == undistinct(not(x1.ct) + ct(1'u64))
undistinct(-x2.ct) == undistinct(not(x2.ct) + ct(1'u64))
undistinct(-x3.ct) == undistinct(not(x3.ct) + ct(1'u64))
undistinct(-y1.ct) == undistinct(not(y1.ct) + ct(1'u64))
undistinct(-y2.ct) == undistinct(not(y2.ct) + ct(1'u64))
undistinct(-y3.ct) == undistinct(not(y3.ct) + ct(1'u64))
suite "Constant-time booleans":
test "Boolean not":
check:
not(ctrue(uint32)).bool == false
not(cfalse(uint32)).bool == true
test "Comparison":
check:
bool(ct(0'u32) != ct(0'u32)) == false
bool(ct(0'u32) != ct(1'u32)) == true
bool(ct(10'u32) == ct(10'u32)) == true
bool(ct(10'u32) != ct(20'u32)) == true
bool(ct(10'u32) <= ct(10'u32)) == true
bool(ct(10'u32) <= ct(20'u32)) == true
bool(ct(10'u32) <= ct(5'u32)) == false
bool(ct(10'u32) <= ct(0xFFFFFFFF'u32)) == true
bool(ct(10'u32) < ct(10'u32)) == false
bool(ct(10'u32) < ct(20'u32)) == true
bool(ct(10'u32) < ct(5'u32)) == false
bool(ct(10'u32) < ct(0xFFFFFFFF'u32)) == true
bool(ct(10'u32) > ct(10'u32)) == false
bool(ct(10'u32) > ct(20'u32)) == false
bool(ct(10'u32) > ct(5'u32)) == true
bool(ct(10'u32) > ct(0xFFFFFFFF'u32)) == false
bool(ct(10'u32) >= ct(10'u32)) == true
bool(ct(10'u32) >= ct(20'u32)) == false
bool(ct(10'u32) >= ct(5'u32)) == true
bool(ct(10'u32) >= ct(0xFFFFFFFF'u32)) == false
test "Multiplexer/selector - mux(ctl, x, y) <=> ctl? x: y":
let u = 10'u32.ct
let v = 20'u32.ct
let w = 5'u32.ct
let y = ctrue(uint32)
let n = cfalse(uint32)
check:
bool(mux(y, u, v) == u)
bool(mux(n, u, v) == v)
bool(mux(y, u, w) == u)
bool(mux(n, u, w) == w)
bool(mux(y, v, w) == v)
bool(mux(n, v, w) == w)