Generalize the tower extensions tests 1000+ lines saved
This commit is contained in:
parent
1559bda56c
commit
75557d88d8
|
@ -26,3 +26,17 @@ macro staticFor*(idx: untyped{nkIdent}, start, stopEx: static int, body: untyped
|
|||
ident("unrolledIter_" & $idx & $i),
|
||||
body.replaceNodes(idx, newLit i)
|
||||
)
|
||||
|
||||
{.experimental: "dynamicBindSym".}
|
||||
|
||||
macro staticFor*(ident: untyped{nkIdent}, choices: typed, body: untyped): untyped =
|
||||
## matches
|
||||
## staticFor(curve, TestCurves):
|
||||
## body
|
||||
## and unroll the body for each curve in TestCurves
|
||||
result = newStmtList()
|
||||
for choice in choices:
|
||||
result.add nnkBlockStmt.newTree(
|
||||
ident($ident & "_" & $choice.intVal),
|
||||
body.replaceNodes(ident, choice)
|
||||
)
|
||||
|
|
|
@ -7,535 +7,27 @@
|
|||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import
|
||||
# Standard library
|
||||
unittest, times,
|
||||
# Internals
|
||||
../constantine/towers,
|
||||
../constantine/config/[common, curves],
|
||||
../constantine/arithmetic,
|
||||
../constantine/config/curves,
|
||||
# Test utilities
|
||||
../helpers/prng_unsafe
|
||||
|
||||
const Iters = 128
|
||||
|
||||
# Random seed for reproducibility
|
||||
var rng: RngState
|
||||
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||||
rng.seed(seed)
|
||||
echo "test_fp12 xoshiro512** seed: ", seed
|
||||
|
||||
# Import: wrap in field element tests in small procedures
|
||||
# otherwise they will become globals,
|
||||
# and will create binary size issues.
|
||||
# Also due to Nim stack scanning,
|
||||
# having too many elements on the stack (a couple kB)
|
||||
# will significantly slow down testing (100x is possible)
|
||||
|
||||
suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
|
||||
test "Comparison sanity checks":
|
||||
proc test(C: static Curve) =
|
||||
var z, o {.noInit.}: Fp12[C]
|
||||
|
||||
z.setZero()
|
||||
o.setOne()
|
||||
|
||||
check: not bool(z == o)
|
||||
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_381)
|
||||
|
||||
test "Addition, substraction negation are consistent":
|
||||
proc test(C: static Curve) =
|
||||
# Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg
|
||||
# (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1
|
||||
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp12[C]
|
||||
|
||||
One.setOne()
|
||||
a = rng.random_unsafe(Fp12[C])
|
||||
a2 = a
|
||||
a2.double()
|
||||
na.neg(a)
|
||||
|
||||
b = rng.random_unsafe(Fp12[C])
|
||||
b2.double(b)
|
||||
nb.neg(b)
|
||||
|
||||
accum.diff(One, na)
|
||||
accum -= b
|
||||
accum += na
|
||||
accum -= a2
|
||||
|
||||
var t{.noInit.}: Fp12[C]
|
||||
t.sum(a2, b2)
|
||||
t += nb
|
||||
|
||||
accum += t
|
||||
check: bool accum.isOne()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring 1 returns 1":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp12[C]
|
||||
O.setOne()
|
||||
O
|
||||
block:
|
||||
var r{.noinit.}: Fp12[C]
|
||||
r.square(One)
|
||||
check: bool(r == One)
|
||||
# block:
|
||||
# var r{.noinit.}: Fp12[C]
|
||||
# r.prod(One, One)
|
||||
# check: bool(r == One)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring 2 returns 4":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp12[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var Two: Fp12[C]
|
||||
Two.double(One)
|
||||
|
||||
var Four: Fp12[C]
|
||||
Four.double(Two)
|
||||
|
||||
block:
|
||||
var r: Fp12[C]
|
||||
r.square(Two)
|
||||
|
||||
check: bool(r == Four)
|
||||
# block:
|
||||
# var r: Fp12[C]
|
||||
# r.prod(Two, Two)
|
||||
|
||||
# check: bool(r == Four)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring 3 returns 9":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp12[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var Three: Fp12[C]
|
||||
for _ in 0 ..< 3:
|
||||
Three += One
|
||||
|
||||
var Nine: Fp12[C]
|
||||
for _ in 0 ..< 9:
|
||||
Nine += One
|
||||
|
||||
block:
|
||||
var u: Fp12[C]
|
||||
u.square(Three)
|
||||
|
||||
check: bool(u == Nine)
|
||||
# block:
|
||||
# var u: Fp12[C]
|
||||
# u.prod(Three, Three)
|
||||
|
||||
# check: bool(u == Nine)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring -3 returns 9":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp12[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var MinusThree: Fp12[C]
|
||||
for _ in 0 ..< 3:
|
||||
MinusThree -= One
|
||||
|
||||
var Nine: Fp12[C]
|
||||
for _ in 0 ..< 9:
|
||||
Nine += One
|
||||
|
||||
block:
|
||||
var u: Fp12[C]
|
||||
u.square(MinusThree)
|
||||
|
||||
check: bool(u == Nine)
|
||||
# block:
|
||||
# var u: Fp12[C]
|
||||
# u.prod(MinusThree, MinusThree)
|
||||
|
||||
# check: bool(u == Nine)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Multiplication by 0 and 1":
|
||||
template test(C: static Curve, body: untyped) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let Zero {.inject, used.} = block:
|
||||
var Z{.noInit.}: Fp12[C]
|
||||
Z.setZero()
|
||||
Z
|
||||
let One {.inject, used.} = block:
|
||||
var O{.noInit.}: Fp12[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
for _ in 0 ..< Iters:
|
||||
let x {.inject.} = rng.random_unsafe(Fp12[C])
|
||||
var r{.noinit, inject.}: Fp12[C]
|
||||
body
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(x, Zero)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(Zero, x)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(x, One)
|
||||
# check: bool(r == x)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(One, x)
|
||||
# check: bool(r == x)
|
||||
test(BN254_Snarks):
|
||||
r.prod(x, Zero)
|
||||
check: bool(r == Zero)
|
||||
test(BN254_Snarks):
|
||||
r.prod(Zero, x)
|
||||
check: bool(r == Zero)
|
||||
test(BN254_Snarks):
|
||||
r.prod(x, One)
|
||||
check: bool(r == x)
|
||||
test(BN254_Snarks):
|
||||
r.prod(One, x)
|
||||
check: bool(r == x)
|
||||
test(BLS12_381):
|
||||
r.prod(x, Zero)
|
||||
check: bool(r == Zero)
|
||||
test(BLS12_381):
|
||||
r.prod(Zero, x)
|
||||
check: bool(r == Zero)
|
||||
test(BLS12_381):
|
||||
r.prod(x, One)
|
||||
check: bool(r == x)
|
||||
test(BLS12_381):
|
||||
r.prod(One, x)
|
||||
check: bool(r == x)
|
||||
# test(BN462):
|
||||
# r.prod(x, Zero)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN462):
|
||||
# r.prod(Zero, x)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN462):
|
||||
# r.prod(x, One)
|
||||
# check: bool(r == x)
|
||||
# test(BN462):
|
||||
# r.prod(One, x)
|
||||
# check: bool(r == x)
|
||||
|
||||
test "Multiplication and Squaring are consistent":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp12[C])
|
||||
var rMul{.noInit.}, rSqr{.noInit.}: Fp12[C]
|
||||
|
||||
rMul.prod(a, a)
|
||||
rSqr.square(a)
|
||||
|
||||
check: bool(rMul == rSqr)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring the opposite gives the same result":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp12[C])
|
||||
var na{.noInit.}: Fp12[C]
|
||||
na.neg(a)
|
||||
|
||||
var rSqr{.noInit.}, rNegSqr{.noInit.}: Fp12[C]
|
||||
|
||||
rSqr.square(a)
|
||||
rNegSqr.square(na)
|
||||
|
||||
check: bool(rSqr == rNegSqr)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Multiplication and Addition/Substraction are consistent":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let factor = rng.random_unsafe(-30..30)
|
||||
|
||||
let a = rng.random_unsafe(Fp12[C])
|
||||
|
||||
if factor == 0: continue
|
||||
|
||||
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Fp12[C]
|
||||
one.setOne()
|
||||
|
||||
if factor < 0:
|
||||
sum.neg(a)
|
||||
f.neg(one)
|
||||
for i in 1 ..< -factor:
|
||||
sum -= a
|
||||
f -= one
|
||||
else:
|
||||
sum = a
|
||||
f = one
|
||||
for i in 1 ..< factor:
|
||||
sum += a
|
||||
f += one
|
||||
|
||||
var r{.noInit.}: Fp12[C]
|
||||
|
||||
r.prod(a, f)
|
||||
|
||||
check: bool(r == sum)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Addition is associative and commutative":
|
||||
proc abelianGroup(curve: static Curve) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp12[curve])
|
||||
let b = rng.random_unsafe(Fp12[curve])
|
||||
let c = rng.random_unsafe(Fp12[curve])
|
||||
|
||||
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
|
||||
|
||||
# r0 = (a + b) + c
|
||||
tmp1.sum(a, b)
|
||||
tmp2.sum(tmp1, c)
|
||||
let r0 = tmp2
|
||||
|
||||
# r1 = a + (b + c)
|
||||
tmp1.sum(b, c)
|
||||
tmp2.sum(a, tmp1)
|
||||
let r1 = tmp2
|
||||
|
||||
# r2 = (a + c) + b
|
||||
tmp1.sum(a, c)
|
||||
tmp2.sum(tmp1, b)
|
||||
let r2 = tmp2
|
||||
|
||||
# r3 = a + (c + b)
|
||||
tmp1.sum(c, b)
|
||||
tmp2.sum(a, tmp1)
|
||||
let r3 = tmp2
|
||||
|
||||
# r4 = (c + a) + b
|
||||
tmp1.sum(c, a)
|
||||
tmp2.sum(tmp1, b)
|
||||
let r4 = tmp2
|
||||
|
||||
# ...
|
||||
|
||||
check:
|
||||
bool(r0 == r1)
|
||||
bool(r0 == r2)
|
||||
bool(r0 == r3)
|
||||
bool(r0 == r4)
|
||||
|
||||
# abelianGroup(BN254_Nogami)
|
||||
abelianGroup(BN254_Snarks)
|
||||
abelianGroup(BLS12_377)
|
||||
abelianGroup(BLS12_381)
|
||||
# abelianGroup(BN446)
|
||||
# abelianGroup(FKM12_447)
|
||||
# abelianGroup(BLS12_461)
|
||||
# abelianGroup(BN462)
|
||||
|
||||
test "Multiplication is associative and commutative":
|
||||
proc commutativeRing(curve: static Curve) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp12[curve])
|
||||
let b = rng.random_unsafe(Fp12[curve])
|
||||
let c = rng.random_unsafe(Fp12[curve])
|
||||
|
||||
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
|
||||
|
||||
# r0 = (a * b) * c
|
||||
tmp1.prod(a, b)
|
||||
tmp2.prod(tmp1, c)
|
||||
let r0 = tmp2
|
||||
|
||||
# r1 = a * (b * c)
|
||||
tmp1.prod(b, c)
|
||||
tmp2.prod(a, tmp1)
|
||||
let r1 = tmp2
|
||||
|
||||
# r2 = (a * c) * b
|
||||
tmp1.prod(a, c)
|
||||
tmp2.prod(tmp1, b)
|
||||
let r2 = tmp2
|
||||
|
||||
# r3 = a * (c * b)
|
||||
tmp1.prod(c, b)
|
||||
tmp2.prod(a, tmp1)
|
||||
let r3 = tmp2
|
||||
|
||||
# r4 = (c * a) * b
|
||||
tmp1.prod(c, a)
|
||||
tmp2.prod(tmp1, b)
|
||||
let r4 = tmp2
|
||||
|
||||
# ...
|
||||
|
||||
check:
|
||||
bool(r0 == r1)
|
||||
bool(r0 == r2)
|
||||
bool(r0 == r3)
|
||||
bool(r0 == r4)
|
||||
|
||||
# commutativeRing(BN254_Nogami)
|
||||
commutativeRing(BN254_Snarks)
|
||||
commutativeRing(BLS12_377)
|
||||
commutativeRing(BLS12_381)
|
||||
# commutativeRing(BN446)
|
||||
# commutativeRing(FKM12_447)
|
||||
# commutativeRing(BLS12_461)
|
||||
# commutativeRing(BN462)
|
||||
|
||||
test "Extension field multiplicative inverse":
|
||||
proc mulInvOne(curve: static Curve) =
|
||||
var one: Fp12[curve]
|
||||
one.setOne()
|
||||
|
||||
block: # Inverse of 1 is 1
|
||||
var r {.noInit.}: Fp12[curve]
|
||||
r.inv(one)
|
||||
check: bool(r == one)
|
||||
|
||||
var aInv, r{.noInit.}: Fp12[curve]
|
||||
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp12[curve])
|
||||
|
||||
aInv.inv(a)
|
||||
r.prod(a, aInv)
|
||||
check: bool(r == one)
|
||||
|
||||
r.prod(aInv, a)
|
||||
check: bool(r == one)
|
||||
|
||||
# mulInvOne(BN254_Nogami)
|
||||
mulInvOne(BN254_Snarks)
|
||||
mulInvOne(BLS12_377)
|
||||
mulInvOne(BLS12_381)
|
||||
# mulInvOne(BN446)
|
||||
# mulInvOne(FKM12_447)
|
||||
# mulInvOne(BLS12_461)
|
||||
# mulInvOne(BN462)
|
||||
|
||||
test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion":
|
||||
proc test(curve: static Curve) =
|
||||
var z: Fp12[curve]
|
||||
z.setZero()
|
||||
|
||||
var zInv{.noInit.}: Fp12[curve]
|
||||
|
||||
zInv.inv(z)
|
||||
check: bool zInv.isZero()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
./test_fp_tower_template
|
||||
|
||||
const TestCurves = [
|
||||
# BN254_Nogami
|
||||
BN254_Snarks,
|
||||
BLS12_377,
|
||||
BLS12_381,
|
||||
# BN446
|
||||
# FKM12_447
|
||||
# BLS12_461
|
||||
# BN462
|
||||
]
|
||||
|
||||
runTowerTests(
|
||||
ExtDegree = 12,
|
||||
Iters = 128,
|
||||
TestCurves = TestCurves,
|
||||
moduleName = "test_fp12",
|
||||
testSuiteDesc = "𝔽p12 = 𝔽p6[w] (irreducible polynomial w²-γ = 0) -> 𝔽p12 point (a, b) with coordinate a + bw and γ quadratic non-residue in 𝔽p6"
|
||||
)
|
||||
|
|
|
@ -7,425 +7,27 @@
|
|||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import
|
||||
# Standard library
|
||||
unittest, times,
|
||||
# Internals
|
||||
../constantine/towers,
|
||||
../constantine/config/[common, curves],
|
||||
../constantine/arithmetic,
|
||||
../constantine/config/curves,
|
||||
# Test utilities
|
||||
../helpers/prng_unsafe
|
||||
|
||||
const Iters = 128
|
||||
|
||||
# Random seed for reproducibility
|
||||
var rng: RngState
|
||||
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||||
rng.seed(seed)
|
||||
echo "test_fp2 xoshiro512** seed: ", seed
|
||||
|
||||
# Import: wrap in field element tests in small procedures
|
||||
# otherwise they will become globals,
|
||||
# and will create binary size issues.
|
||||
# Also due to Nim stack scanning,
|
||||
# having too many elements on the stack (a couple kB)
|
||||
# will significantly slow down testing (100x is possible)
|
||||
|
||||
suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
|
||||
test "Comparison sanity checks":
|
||||
proc test(C: static Curve) =
|
||||
var z, o {.noInit.}: Fp2[C]
|
||||
|
||||
z.setZero()
|
||||
o.setOne()
|
||||
|
||||
check: not bool(z == o)
|
||||
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_381)
|
||||
|
||||
test "Fp2 '1' coordinates in canonical domain":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let oneFp2 = block:
|
||||
var O{.noInit.}: Fp2[C]
|
||||
O.setOne()
|
||||
O
|
||||
let oneBig = block:
|
||||
var O{.noInit.}: typeof(C.Mod)
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var r: typeof(C.Mod)
|
||||
r.redc(oneFp2.c0.mres, C.Mod, C.getNegInvModWord(), canUseNoCarryMontyMul = false)
|
||||
|
||||
check:
|
||||
bool(r == oneBig)
|
||||
bool(oneFp2.c1.mres.isZero())
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_381)
|
||||
|
||||
test "Addition, substraction negation are consistent":
|
||||
proc test(C: static Curve) =
|
||||
# Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg
|
||||
# (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1
|
||||
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp2[C]
|
||||
|
||||
One.setOne()
|
||||
a = rng.random_unsafe(Fp2[C])
|
||||
a2 = a
|
||||
a2.double()
|
||||
na.neg(a)
|
||||
|
||||
b = rng.random_unsafe(Fp2[C])
|
||||
b2.double(b)
|
||||
nb.neg(b)
|
||||
|
||||
accum.diff(One, na)
|
||||
accum -= b
|
||||
accum += na
|
||||
accum -= a2
|
||||
|
||||
var t{.noInit.}: Fp2[C]
|
||||
t.sum(a2, b2)
|
||||
t += nb
|
||||
|
||||
accum += t
|
||||
check: bool accum.isOne()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring 1 returns 1":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp2[C]
|
||||
O.setOne()
|
||||
O
|
||||
block:
|
||||
var r{.noinit.}: Fp2[C]
|
||||
r.square(One)
|
||||
check: bool(r == One)
|
||||
block:
|
||||
var r{.noinit.}: Fp2[C]
|
||||
r.prod(One, One)
|
||||
check: bool(r == One)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Multiplication by 0 and 1":
|
||||
template test(C: static Curve, body: untyped) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let Zero {.inject.} = block:
|
||||
var Z{.noInit.}: Fp2[C]
|
||||
Z.setZero()
|
||||
Z
|
||||
let One {.inject.} = block:
|
||||
var O{.noInit.}: Fp2[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
for _ in 0 ..< Iters:
|
||||
let x {.inject.} = rng.random_unsafe(Fp2[C])
|
||||
var r{.noinit, inject.}: Fp2[C]
|
||||
body
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(x, Zero)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(Zero, x)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(x, One)
|
||||
# check: bool(r == x)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(One, x)
|
||||
# check: bool(r == x)
|
||||
test(BN254_Snarks):
|
||||
r.prod(x, Zero)
|
||||
check: bool(r == Zero)
|
||||
test(BN254_Snarks):
|
||||
r.prod(Zero, x)
|
||||
check: bool(r == Zero)
|
||||
test(BN254_Snarks):
|
||||
r.prod(x, One)
|
||||
check: bool(r == x)
|
||||
test(BN254_Snarks):
|
||||
r.prod(One, x)
|
||||
check: bool(r == x)
|
||||
test(BLS12_381):
|
||||
r.prod(x, Zero)
|
||||
check: bool(r == Zero)
|
||||
test(BLS12_381):
|
||||
r.prod(Zero, x)
|
||||
check: bool(r == Zero)
|
||||
test(BLS12_381):
|
||||
r.prod(x, One)
|
||||
check: bool(r == x)
|
||||
test(BLS12_381):
|
||||
r.prod(One, x)
|
||||
check: bool(r == x)
|
||||
|
||||
test "Multiplication and Squaring are consistent":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp2[C])
|
||||
var rMul{.noInit.}, rSqr{.noInit.}: Fp2[C]
|
||||
|
||||
rMul.prod(a, a)
|
||||
rSqr.square(a)
|
||||
|
||||
check: bool(rMul == rSqr)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring the opposite gives the same result":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp2[C])
|
||||
var na{.noInit.}: Fp2[C]
|
||||
na.neg(a)
|
||||
|
||||
var rSqr{.noInit.}, rNegSqr{.noInit.}: Fp2[C]
|
||||
|
||||
rSqr.square(a)
|
||||
rNegSqr.square(na)
|
||||
|
||||
check: bool(rSqr == rNegSqr)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Multiplication and Addition/Substraction are consistent":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let factor = rng.random_unsafe(-30..30)
|
||||
|
||||
let a = rng.random_unsafe(Fp2[C])
|
||||
|
||||
if factor == 0: continue
|
||||
|
||||
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Fp2[C]
|
||||
one.setOne()
|
||||
|
||||
if factor < 0:
|
||||
sum.neg(a)
|
||||
f.neg(one)
|
||||
for i in 1 ..< -factor:
|
||||
sum -= a
|
||||
f -= one
|
||||
else:
|
||||
sum = a
|
||||
f = one
|
||||
for i in 1 ..< factor:
|
||||
sum += a
|
||||
f += one
|
||||
|
||||
var r{.noInit.}: Fp2[C]
|
||||
|
||||
r.prod(a, f)
|
||||
|
||||
check: bool(r == sum)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Addition is associative and commutative":
|
||||
proc abelianGroup(curve: static Curve) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp2[curve])
|
||||
let b = rng.random_unsafe(Fp2[curve])
|
||||
let c = rng.random_unsafe(Fp2[curve])
|
||||
|
||||
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
|
||||
|
||||
# r0 = (a + b) + c
|
||||
tmp1.sum(a, b)
|
||||
tmp2.sum(tmp1, c)
|
||||
let r0 = tmp2
|
||||
|
||||
# r1 = a + (b + c)
|
||||
tmp1.sum(b, c)
|
||||
tmp2.sum(a, tmp1)
|
||||
let r1 = tmp2
|
||||
|
||||
# r2 = (a + c) + b
|
||||
tmp1.sum(a, c)
|
||||
tmp2.sum(tmp1, b)
|
||||
let r2 = tmp2
|
||||
|
||||
# r3 = a + (c + b)
|
||||
tmp1.sum(c, b)
|
||||
tmp2.sum(a, tmp1)
|
||||
let r3 = tmp2
|
||||
|
||||
# r4 = (c + a) + b
|
||||
tmp1.sum(c, a)
|
||||
tmp2.sum(tmp1, b)
|
||||
let r4 = tmp2
|
||||
|
||||
# ...
|
||||
|
||||
check:
|
||||
bool(r0 == r1)
|
||||
bool(r0 == r2)
|
||||
bool(r0 == r3)
|
||||
bool(r0 == r4)
|
||||
|
||||
# abelianGroup(BN254_Nogami)
|
||||
abelianGroup(BN254_Snarks)
|
||||
abelianGroup(BLS12_377)
|
||||
abelianGroup(BLS12_381)
|
||||
# abelianGroup(BN446)
|
||||
# abelianGroup(FKM12_447)
|
||||
# abelianGroup(BLS12_461)
|
||||
# abelianGroup(BN462)
|
||||
|
||||
test "Multiplication is associative and commutative":
|
||||
proc commutativeRing(curve: static Curve) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp2[curve])
|
||||
let b = rng.random_unsafe(Fp2[curve])
|
||||
let c = rng.random_unsafe(Fp2[curve])
|
||||
|
||||
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
|
||||
|
||||
# r0 = (a * b) * c
|
||||
tmp1.prod(a, b)
|
||||
tmp2.prod(tmp1, c)
|
||||
let r0 = tmp2
|
||||
|
||||
# r1 = a * (b * c)
|
||||
tmp1.prod(b, c)
|
||||
tmp2.prod(a, tmp1)
|
||||
let r1 = tmp2
|
||||
|
||||
# r2 = (a * c) * b
|
||||
tmp1.prod(a, c)
|
||||
tmp2.prod(tmp1, b)
|
||||
let r2 = tmp2
|
||||
|
||||
# r3 = a * (c * b)
|
||||
tmp1.prod(c, b)
|
||||
tmp2.prod(a, tmp1)
|
||||
let r3 = tmp2
|
||||
|
||||
# r4 = (c * a) * b
|
||||
tmp1.prod(c, a)
|
||||
tmp2.prod(tmp1, b)
|
||||
let r4 = tmp2
|
||||
|
||||
# ...
|
||||
|
||||
check:
|
||||
bool(r0 == r1)
|
||||
bool(r0 == r2)
|
||||
bool(r0 == r3)
|
||||
bool(r0 == r4)
|
||||
|
||||
# commutativeRing(BN254_Nogami)
|
||||
commutativeRing(BN254_Snarks)
|
||||
commutativeRing(BLS12_377)
|
||||
commutativeRing(BLS12_381)
|
||||
# commutativeRing(BN446)
|
||||
# commutativeRing(FKM12_447)
|
||||
# commutativeRing(BLS12_461)
|
||||
# commutativeRing(BN462)
|
||||
|
||||
test "Extension field multiplicative inverse":
|
||||
proc mulInvOne(curve: static Curve) =
|
||||
var one: Fp2[curve]
|
||||
one.setOne()
|
||||
|
||||
var aInv, r{.noInit.}: Fp2[curve]
|
||||
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp2[curve])
|
||||
aInv.inv(a)
|
||||
r.prod(a, aInv)
|
||||
check: bool(r == one)
|
||||
r.prod(aInv, a)
|
||||
check: bool(r == one)
|
||||
|
||||
# mulInvOne(BN254_Nogami)
|
||||
mulInvOne(BN254_Snarks)
|
||||
mulInvOne(BLS12_377)
|
||||
mulInvOne(BLS12_381)
|
||||
# mulInvOne(BN446)
|
||||
# mulInvOne(FKM12_447)
|
||||
# mulInvOne(BLS12_461)
|
||||
# mulInvOne(BN462)
|
||||
|
||||
test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion":
|
||||
proc test(curve: static Curve) =
|
||||
var z: Fp2[curve]
|
||||
z.setZero()
|
||||
|
||||
var zInv{.noInit.}: Fp2[curve]
|
||||
|
||||
zInv.inv(z)
|
||||
check: bool zInv.isZero()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
./test_fp_tower_template
|
||||
|
||||
const TestCurves = [
|
||||
# BN254_Nogami
|
||||
BN254_Snarks,
|
||||
BLS12_377,
|
||||
BLS12_381,
|
||||
# BN446
|
||||
# FKM12_447
|
||||
# BLS12_461
|
||||
# BN462
|
||||
]
|
||||
|
||||
runTowerTests(
|
||||
ExtDegree = 2,
|
||||
Iters = 128,
|
||||
TestCurves = TestCurves,
|
||||
moduleName = "test_fp2",
|
||||
testSuiteDesc = "𝔽p2 = 𝔽p[u] (irreducible polynomial u²-β = 0) -> 𝔽p2 point (a, b) with coordinate a + bu and β quadratic non-residue in 𝔽p"
|
||||
)
|
||||
|
|
|
@ -7,535 +7,27 @@
|
|||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import
|
||||
# Standard library
|
||||
unittest, times,
|
||||
# Internals
|
||||
../constantine/towers,
|
||||
../constantine/config/[common, curves],
|
||||
../constantine/arithmetic,
|
||||
../constantine/config/curves,
|
||||
# Test utilities
|
||||
../helpers/prng_unsafe
|
||||
|
||||
const Iters = 128
|
||||
|
||||
# Random seed for reproducibility
|
||||
var rng: RngState
|
||||
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||||
rng.seed(seed)
|
||||
echo "test_fp6 xoshiro512** seed: ", seed
|
||||
|
||||
# Import: wrap in field element tests in small procedures
|
||||
# otherwise they will become globals,
|
||||
# and will create binary size issues.
|
||||
# Also due to Nim stack scanning,
|
||||
# having too many elements on the stack (a couple kB)
|
||||
# will significantly slow down testing (100x is possible)
|
||||
|
||||
suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
|
||||
test "Comparison sanity checks":
|
||||
proc test(C: static Curve) =
|
||||
var z, o {.noInit.}: Fp6[C]
|
||||
|
||||
z.setZero()
|
||||
o.setOne()
|
||||
|
||||
check: not bool(z == o)
|
||||
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_381)
|
||||
|
||||
test "Addition, substraction negation are consistent":
|
||||
proc test(C: static Curve) =
|
||||
# Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg
|
||||
# (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1
|
||||
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp6[C]
|
||||
|
||||
One.setOne()
|
||||
a = rng.random_unsafe(Fp6[C])
|
||||
a2 = a
|
||||
a2.double()
|
||||
na.neg(a)
|
||||
|
||||
b = rng.random_unsafe(Fp6[C])
|
||||
b2.double(b)
|
||||
nb.neg(b)
|
||||
|
||||
accum.diff(One, na)
|
||||
accum -= b
|
||||
accum += na
|
||||
accum -= a2
|
||||
|
||||
var t{.noInit.}: Fp6[C]
|
||||
t.sum(a2, b2)
|
||||
t += nb
|
||||
|
||||
accum += t
|
||||
check: bool accum.isOne()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring 1 returns 1":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp6[C]
|
||||
O.setOne()
|
||||
O
|
||||
block:
|
||||
var r{.noinit.}: Fp6[C]
|
||||
r.square(One)
|
||||
check: bool(r == One)
|
||||
block:
|
||||
var r{.noinit.}: Fp6[C]
|
||||
r.prod(One, One)
|
||||
check: bool(r == One)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring 2 returns 4":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp6[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var Two: Fp6[C]
|
||||
Two.double(One)
|
||||
|
||||
var Four: Fp6[C]
|
||||
Four.double(Two)
|
||||
|
||||
block:
|
||||
var r: Fp6[C]
|
||||
r.square(Two)
|
||||
|
||||
check: bool(r == Four)
|
||||
block:
|
||||
var r: Fp6[C]
|
||||
r.prod(Two, Two)
|
||||
|
||||
check: bool(r == Four)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring 3 returns 9":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp6[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var Three: Fp6[C]
|
||||
for _ in 0 ..< 3:
|
||||
Three += One
|
||||
|
||||
var Nine: Fp6[C]
|
||||
for _ in 0 ..< 9:
|
||||
Nine += One
|
||||
|
||||
block:
|
||||
var u: Fp6[C]
|
||||
u.square(Three)
|
||||
|
||||
check: bool(u == Nine)
|
||||
block:
|
||||
var u: Fp6[C]
|
||||
u.prod(Three, Three)
|
||||
|
||||
check: bool(u == Nine)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring -3 returns 9":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let One = block:
|
||||
var O{.noInit.}: Fp6[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var MinusThree: Fp6[C]
|
||||
for _ in 0 ..< 3:
|
||||
MinusThree -= One
|
||||
|
||||
var Nine: Fp6[C]
|
||||
for _ in 0 ..< 9:
|
||||
Nine += One
|
||||
|
||||
block:
|
||||
var u: Fp6[C]
|
||||
u.square(MinusThree)
|
||||
|
||||
check: bool(u == Nine)
|
||||
block:
|
||||
var u: Fp6[C]
|
||||
u.prod(MinusThree, MinusThree)
|
||||
|
||||
check: bool(u == Nine)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Multiplication by 0 and 1":
|
||||
template test(C: static Curve, body: untyped) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let Zero {.inject.} = block:
|
||||
var Z{.noInit.}: Fp6[C]
|
||||
Z.setZero()
|
||||
Z
|
||||
let One {.inject.} = block:
|
||||
var O{.noInit.}: Fp6[C]
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
for _ in 0 ..< Iters:
|
||||
let x {.inject.} = rng.random_unsafe(Fp6[C])
|
||||
var r{.noinit, inject.}: Fp6[C]
|
||||
body
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(x, Zero)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(Zero, x)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(x, One)
|
||||
# check: bool(r == x)
|
||||
# test(BN254_Nogami):
|
||||
# r.prod(One, x)
|
||||
# check: bool(r == x)
|
||||
test(BN254_Snarks):
|
||||
r.prod(x, Zero)
|
||||
check: bool(r == Zero)
|
||||
test(BN254_Snarks):
|
||||
r.prod(Zero, x)
|
||||
check: bool(r == Zero)
|
||||
test(BN254_Snarks):
|
||||
r.prod(x, One)
|
||||
check: bool(r == x)
|
||||
test(BN254_Snarks):
|
||||
r.prod(One, x)
|
||||
check: bool(r == x)
|
||||
test(BLS12_381):
|
||||
r.prod(x, Zero)
|
||||
check: bool(r == Zero)
|
||||
test(BLS12_381):
|
||||
r.prod(Zero, x)
|
||||
check: bool(r == Zero)
|
||||
test(BLS12_381):
|
||||
r.prod(x, One)
|
||||
check: bool(r == x)
|
||||
test(BLS12_381):
|
||||
r.prod(One, x)
|
||||
check: bool(r == x)
|
||||
# test(BN462):
|
||||
# r.prod(x, Zero)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN462):
|
||||
# r.prod(Zero, x)
|
||||
# check: bool(r == Zero)
|
||||
# test(BN462):
|
||||
# r.prod(x, One)
|
||||
# check: bool(r == x)
|
||||
# test(BN462):
|
||||
# r.prod(One, x)
|
||||
# check: bool(r == x)
|
||||
|
||||
test "Multiplication and Squaring are consistent":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp6[C])
|
||||
var rMul{.noInit.}, rSqr{.noInit.}: Fp6[C]
|
||||
|
||||
rMul.prod(a, a)
|
||||
rSqr.square(a)
|
||||
|
||||
check: bool(rMul == rSqr)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Squaring the opposite gives the same result":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp6[C])
|
||||
var na{.noInit.}: Fp6[C]
|
||||
na.neg(a)
|
||||
|
||||
var rSqr{.noInit.}, rNegSqr{.noInit.}: Fp6[C]
|
||||
|
||||
rSqr.square(a)
|
||||
rNegSqr.square(na)
|
||||
|
||||
check: bool(rSqr == rNegSqr)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Multiplication and Addition/Substraction are consistent":
|
||||
template test(C: static Curve) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
for _ in 0 ..< Iters:
|
||||
let factor = rng.random_unsafe(-30..30)
|
||||
|
||||
let a = rng.random_unsafe(Fp6[C])
|
||||
|
||||
if factor == 0: continue
|
||||
|
||||
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Fp6[C]
|
||||
one.setOne()
|
||||
|
||||
if factor < 0:
|
||||
sum.neg(a)
|
||||
f.neg(one)
|
||||
for i in 1 ..< -factor:
|
||||
sum -= a
|
||||
f -= one
|
||||
else:
|
||||
sum = a
|
||||
f = one
|
||||
for i in 1 ..< factor:
|
||||
sum += a
|
||||
f += one
|
||||
|
||||
var r{.noInit.}: Fp6[C]
|
||||
|
||||
r.prod(a, f)
|
||||
|
||||
check: bool(r == sum)
|
||||
|
||||
testInstance()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
|
||||
test "Addition is associative and commutative":
|
||||
proc abelianGroup(curve: static Curve) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp6[curve])
|
||||
let b = rng.random_unsafe(Fp6[curve])
|
||||
let c = rng.random_unsafe(Fp6[curve])
|
||||
|
||||
var tmp1{.noInit.}, tmp2{.noInit.}: Fp6[curve]
|
||||
|
||||
# r0 = (a + b) + c
|
||||
tmp1.sum(a, b)
|
||||
tmp2.sum(tmp1, c)
|
||||
let r0 = tmp2
|
||||
|
||||
# r1 = a + (b + c)
|
||||
tmp1.sum(b, c)
|
||||
tmp2.sum(a, tmp1)
|
||||
let r1 = tmp2
|
||||
|
||||
# r2 = (a + c) + b
|
||||
tmp1.sum(a, c)
|
||||
tmp2.sum(tmp1, b)
|
||||
let r2 = tmp2
|
||||
|
||||
# r3 = a + (c + b)
|
||||
tmp1.sum(c, b)
|
||||
tmp2.sum(a, tmp1)
|
||||
let r3 = tmp2
|
||||
|
||||
# r4 = (c + a) + b
|
||||
tmp1.sum(c, a)
|
||||
tmp2.sum(tmp1, b)
|
||||
let r4 = tmp2
|
||||
|
||||
# ...
|
||||
|
||||
check:
|
||||
bool(r0 == r1)
|
||||
bool(r0 == r2)
|
||||
bool(r0 == r3)
|
||||
bool(r0 == r4)
|
||||
|
||||
# abelianGroup(BN254_Nogami)
|
||||
abelianGroup(BN254_Snarks)
|
||||
abelianGroup(BLS12_377)
|
||||
abelianGroup(BLS12_381)
|
||||
# abelianGroup(BN446)
|
||||
# abelianGroup(FKM12_447)
|
||||
# abelianGroup(BLS12_461)
|
||||
# abelianGroup(BN462)
|
||||
|
||||
test "Multiplication is associative and commutative":
|
||||
proc commutativeRing(curve: static Curve) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp6[curve])
|
||||
let b = rng.random_unsafe(Fp6[curve])
|
||||
let c = rng.random_unsafe(Fp6[curve])
|
||||
|
||||
var tmp1{.noInit.}, tmp2{.noInit.}: Fp6[curve]
|
||||
|
||||
# r0 = (a * b) * c
|
||||
tmp1.prod(a, b)
|
||||
tmp2.prod(tmp1, c)
|
||||
let r0 = tmp2
|
||||
|
||||
# r1 = a * (b * c)
|
||||
tmp1.prod(b, c)
|
||||
tmp2.prod(a, tmp1)
|
||||
let r1 = tmp2
|
||||
|
||||
# r2 = (a * c) * b
|
||||
tmp1.prod(a, c)
|
||||
tmp2.prod(tmp1, b)
|
||||
let r2 = tmp2
|
||||
|
||||
# r3 = a * (c * b)
|
||||
tmp1.prod(c, b)
|
||||
tmp2.prod(a, tmp1)
|
||||
let r3 = tmp2
|
||||
|
||||
# r4 = (c * a) * b
|
||||
tmp1.prod(c, a)
|
||||
tmp2.prod(tmp1, b)
|
||||
let r4 = tmp2
|
||||
|
||||
# ...
|
||||
|
||||
check:
|
||||
bool(r0 == r1)
|
||||
bool(r0 == r2)
|
||||
bool(r0 == r3)
|
||||
bool(r0 == r4)
|
||||
|
||||
# commutativeRing(BN254_Nogami)
|
||||
commutativeRing(BN254_Snarks)
|
||||
commutativeRing(BLS12_377)
|
||||
commutativeRing(BLS12_381)
|
||||
# commutativeRing(BN446)
|
||||
# commutativeRing(FKM12_447)
|
||||
# commutativeRing(BLS12_461)
|
||||
# commutativeRing(BN462)
|
||||
|
||||
test "Extension field multiplicative inverse":
|
||||
proc mulInvOne(curve: static Curve) =
|
||||
var one: Fp6[curve]
|
||||
one.setOne()
|
||||
|
||||
block: # Inverse of 1 is 1
|
||||
var r {.noInit.}: Fp6[curve]
|
||||
r.inv(one)
|
||||
check: bool(r == one)
|
||||
|
||||
var aInv, r{.noInit.}: Fp6[curve]
|
||||
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Fp6[curve])
|
||||
|
||||
aInv.inv(a)
|
||||
r.prod(a, aInv)
|
||||
check: bool(r == one)
|
||||
|
||||
r.prod(aInv, a)
|
||||
check: bool(r == one)
|
||||
|
||||
# mulInvOne(BN254_Nogami)
|
||||
mulInvOne(BN254_Snarks)
|
||||
mulInvOne(BLS12_377)
|
||||
mulInvOne(BLS12_381)
|
||||
# mulInvOne(BN446)
|
||||
# mulInvOne(FKM12_447)
|
||||
# mulInvOne(BLS12_461)
|
||||
# mulInvOne(BN462)
|
||||
|
||||
test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion":
|
||||
proc test(curve: static Curve) =
|
||||
var z: Fp6[curve]
|
||||
z.setZero()
|
||||
|
||||
var zInv{.noInit.}: Fp6[curve]
|
||||
|
||||
zInv.inv(z)
|
||||
check: bool zInv.isZero()
|
||||
|
||||
# test(BN254_Nogami)
|
||||
test(BN254_Snarks)
|
||||
test(BLS12_377)
|
||||
test(BLS12_381)
|
||||
# test(BN446)
|
||||
# test(FKM12_447)
|
||||
# test(BLS12_461)
|
||||
# test(BN462)
|
||||
./test_fp_tower_template
|
||||
|
||||
const TestCurves = [
|
||||
# BN254_Nogami
|
||||
BN254_Snarks,
|
||||
BLS12_377,
|
||||
BLS12_381,
|
||||
# BN446
|
||||
# FKM12_447
|
||||
# BLS12_461
|
||||
# BN462
|
||||
]
|
||||
|
||||
runTowerTests(
|
||||
ExtDegree = 6,
|
||||
Iters = 128,
|
||||
TestCurves = TestCurves,
|
||||
moduleName = "test_fp6",
|
||||
testSuiteDesc = "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³-ξ = 0) -> 𝔽p6 point (a, b, c) with coordinate a + bv + cv² and ξ cubic non-residue in 𝔽p2"
|
||||
)
|
||||
|
|
|
@ -0,0 +1,412 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# Template tests for towered extension fields
|
||||
#
|
||||
# ############################################################
|
||||
|
||||
|
||||
import
|
||||
# Standard library
|
||||
std/[unittest, times],
|
||||
# Internals
|
||||
../constantine/towers,
|
||||
../constantine/config/[common, curves],
|
||||
../constantine/arithmetic,
|
||||
# Test utilities
|
||||
../helpers/[prng_unsafe, static_for]
|
||||
|
||||
template ExtField(degree: static int, curve: static Curve): untyped =
|
||||
when degree == 2:
|
||||
Fp2[curve]
|
||||
elif degree == 6:
|
||||
Fp6[curve]
|
||||
elif degree == 12:
|
||||
Fp12[curve]
|
||||
else:
|
||||
{.error: "Unconfigured extension degree".}
|
||||
|
||||
proc runTowerTests*[N](
|
||||
ExtDegree: static int,
|
||||
Iters: static int,
|
||||
TestCurves: static array[N, Curve],
|
||||
moduleName: string,
|
||||
testSuiteDesc: string
|
||||
) =
|
||||
|
||||
# Random seed for reproducibility
|
||||
var rng: RngState
|
||||
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||||
rng.seed(seed)
|
||||
echo moduleName, " xoshiro512** seed: ", seed
|
||||
|
||||
suite testSuiteDesc:
|
||||
test "Comparison sanity checks":
|
||||
proc test(Field: typedesc) =
|
||||
var z, o {.noInit.}: Field
|
||||
|
||||
z.setZero()
|
||||
o.setOne()
|
||||
|
||||
check: not bool(z == o)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve))
|
||||
|
||||
test "Addition, substraction negation are consistent":
|
||||
proc test(Field: typedesc) =
|
||||
# Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg
|
||||
# (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1
|
||||
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Field
|
||||
|
||||
One.setOne()
|
||||
a = rng.random_unsafe(Field)
|
||||
a2 = a
|
||||
a2.double()
|
||||
na.neg(a)
|
||||
|
||||
b = rng.random_unsafe(Field)
|
||||
b2.double(b)
|
||||
nb.neg(b)
|
||||
|
||||
accum.diff(One, na)
|
||||
accum -= b
|
||||
accum += na
|
||||
accum -= a2
|
||||
|
||||
var t{.noInit.}: Field
|
||||
t.sum(a2, b2)
|
||||
t += nb
|
||||
|
||||
accum += t
|
||||
check: bool accum.isOne()
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve))
|
||||
|
||||
test "Squaring 1 returns 1":
|
||||
proc test(Field: typedesc) =
|
||||
let One = block:
|
||||
var O{.noInit.}: Field
|
||||
O.setOne()
|
||||
O
|
||||
block:
|
||||
var r{.noinit.}: Field
|
||||
r.square(One)
|
||||
check: bool(r == One)
|
||||
block:
|
||||
var r{.noinit.}: Field
|
||||
r.prod(One, One)
|
||||
check: bool(r == One)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve))
|
||||
|
||||
test "Squaring 2 returns 4":
|
||||
proc test(Field: typedesc) =
|
||||
let One = block:
|
||||
var O{.noInit.}: Field
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var Two: Field
|
||||
Two.double(One)
|
||||
|
||||
var Four: Field
|
||||
Four.double(Two)
|
||||
|
||||
block:
|
||||
var r: Field
|
||||
r.square(Two)
|
||||
|
||||
check: bool(r == Four)
|
||||
block:
|
||||
var r: Field
|
||||
r.prod(Two, Two)
|
||||
|
||||
check: bool(r == Four)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve))
|
||||
|
||||
test "Squaring 3 returns 9":
|
||||
proc test(Field: typedesc) =
|
||||
let One = block:
|
||||
var O{.noInit.}: Field
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var Three: Field
|
||||
for _ in 0 ..< 3:
|
||||
Three += One
|
||||
|
||||
var Nine: Field
|
||||
for _ in 0 ..< 9:
|
||||
Nine += One
|
||||
|
||||
block:
|
||||
var u: Field
|
||||
u.square(Three)
|
||||
|
||||
check: bool(u == Nine)
|
||||
block:
|
||||
var u: Field
|
||||
u.prod(Three, Three)
|
||||
|
||||
check: bool(u == Nine)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve))
|
||||
|
||||
test "Squaring -3 returns 9":
|
||||
proc test(Field: typedesc) =
|
||||
let One = block:
|
||||
var O{.noInit.}: Field
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
var MinusThree: Field
|
||||
for _ in 0 ..< 3:
|
||||
MinusThree -= One
|
||||
|
||||
var Nine: Field
|
||||
for _ in 0 ..< 9:
|
||||
Nine += One
|
||||
|
||||
block:
|
||||
var u: Field
|
||||
u.square(MinusThree)
|
||||
|
||||
check: bool(u == Nine)
|
||||
block:
|
||||
var u: Field
|
||||
u.prod(MinusThree, MinusThree)
|
||||
|
||||
check: bool(u == Nine)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve))
|
||||
|
||||
test "Multiplication by 0 and 1":
|
||||
template test(Field: typedesc, body: untyped) =
|
||||
block:
|
||||
proc testInstance() =
|
||||
let Z {.inject.} = block:
|
||||
var Z{.noInit.}: Field
|
||||
Z.setZero()
|
||||
Z
|
||||
let O {.inject.} = block:
|
||||
var O{.noInit.}: Field
|
||||
O.setOne()
|
||||
O
|
||||
|
||||
for _ in 0 ..< Iters:
|
||||
let x {.inject.} = rng.random_unsafe(Field)
|
||||
var r{.noinit, inject.}: Field
|
||||
body
|
||||
|
||||
testInstance()
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve)):
|
||||
r.prod(x, Z)
|
||||
check: bool(r == Z)
|
||||
test(ExtField(ExtDegree, curve)):
|
||||
r.prod(Z, x)
|
||||
check: bool(r == Z)
|
||||
test(ExtField(ExtDegree, curve)):
|
||||
r.prod(x, O)
|
||||
check: bool(r == x)
|
||||
test(ExtField(ExtDegree, curve)):
|
||||
r.prod(O, x)
|
||||
check: bool(r == x)
|
||||
|
||||
test "Multiplication and Squaring are consistent":
|
||||
proc test(Field: typedesc, Iters: static int) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Field)
|
||||
var rMul{.noInit.}, rSqr{.noInit.}: Field
|
||||
|
||||
rMul.prod(a, a)
|
||||
rSqr.square(a)
|
||||
|
||||
check: bool(rMul == rSqr)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve), Iters)
|
||||
|
||||
test "Squaring the opposite gives the same result":
|
||||
proc test(Field: typedesc, Iters: static int) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Field)
|
||||
var na{.noInit.}: Field
|
||||
na.neg(a)
|
||||
|
||||
var rSqr{.noInit.}, rNegSqr{.noInit.}: Field
|
||||
|
||||
rSqr.square(a)
|
||||
rNegSqr.square(na)
|
||||
|
||||
check: bool(rSqr == rNegSqr)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve), Iters)
|
||||
|
||||
test "Multiplication and Addition/Substraction are consistent":
|
||||
proc test(Field: typedesc, Iters: static int) =
|
||||
for _ in 0 ..< Iters:
|
||||
let factor = rng.random_unsafe(-30..30)
|
||||
|
||||
let a = rng.random_unsafe(Field)
|
||||
|
||||
if factor == 0: continue
|
||||
|
||||
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Field
|
||||
one.setOne()
|
||||
|
||||
if factor < 0:
|
||||
sum.neg(a)
|
||||
f.neg(one)
|
||||
for i in 1 ..< -factor:
|
||||
sum -= a
|
||||
f -= one
|
||||
else:
|
||||
sum = a
|
||||
f = one
|
||||
for i in 1 ..< factor:
|
||||
sum += a
|
||||
f += one
|
||||
|
||||
var r{.noInit.}: Field
|
||||
|
||||
r.prod(a, f)
|
||||
|
||||
check: bool(r == sum)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve), Iters)
|
||||
|
||||
test "Addition is associative and commutative":
|
||||
proc test(Field: typedesc, Iters: static int) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Field)
|
||||
let b = rng.random_unsafe(Field)
|
||||
let c = rng.random_unsafe(Field)
|
||||
|
||||
var tmp1{.noInit.}, tmp2{.noInit.}: Field
|
||||
|
||||
# r0 = (a + b) + c
|
||||
tmp1.sum(a, b)
|
||||
tmp2.sum(tmp1, c)
|
||||
let r0 = tmp2
|
||||
|
||||
# r1 = a + (b + c)
|
||||
tmp1.sum(b, c)
|
||||
tmp2.sum(a, tmp1)
|
||||
let r1 = tmp2
|
||||
|
||||
# r2 = (a + c) + b
|
||||
tmp1.sum(a, c)
|
||||
tmp2.sum(tmp1, b)
|
||||
let r2 = tmp2
|
||||
|
||||
# r3 = a + (c + b)
|
||||
tmp1.sum(c, b)
|
||||
tmp2.sum(a, tmp1)
|
||||
let r3 = tmp2
|
||||
|
||||
# r4 = (c + a) + b
|
||||
tmp1.sum(c, a)
|
||||
tmp2.sum(tmp1, b)
|
||||
let r4 = tmp2
|
||||
|
||||
# ...
|
||||
|
||||
check:
|
||||
bool(r0 == r1)
|
||||
bool(r0 == r2)
|
||||
bool(r0 == r3)
|
||||
bool(r0 == r4)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve), Iters)
|
||||
|
||||
test "Multiplication is associative and commutative":
|
||||
proc test(Field: typedesc, Iters: static int) =
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Field)
|
||||
let b = rng.random_unsafe(Field)
|
||||
let c = rng.random_unsafe(Field)
|
||||
|
||||
var tmp1{.noInit.}, tmp2{.noInit.}: Field
|
||||
|
||||
# r0 = (a * b) * c
|
||||
tmp1.prod(a, b)
|
||||
tmp2.prod(tmp1, c)
|
||||
let r0 = tmp2
|
||||
|
||||
# r1 = a * (b * c)
|
||||
tmp1.prod(b, c)
|
||||
tmp2.prod(a, tmp1)
|
||||
let r1 = tmp2
|
||||
|
||||
# r2 = (a * c) * b
|
||||
tmp1.prod(a, c)
|
||||
tmp2.prod(tmp1, b)
|
||||
let r2 = tmp2
|
||||
|
||||
# r3 = a * (c * b)
|
||||
tmp1.prod(c, b)
|
||||
tmp2.prod(a, tmp1)
|
||||
let r3 = tmp2
|
||||
|
||||
# r4 = (c * a) * b
|
||||
tmp1.prod(c, a)
|
||||
tmp2.prod(tmp1, b)
|
||||
let r4 = tmp2
|
||||
|
||||
# ...
|
||||
|
||||
check:
|
||||
bool(r0 == r1)
|
||||
bool(r0 == r2)
|
||||
bool(r0 == r3)
|
||||
bool(r0 == r4)
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve), Iters)
|
||||
|
||||
test "Extension field multiplicative inverse":
|
||||
proc test(Field: typedesc, Iters: static int) =
|
||||
var aInv, r{.noInit.}: Field
|
||||
|
||||
for _ in 0 ..< Iters:
|
||||
let a = rng.random_unsafe(Field)
|
||||
aInv.inv(a)
|
||||
r.prod(a, aInv)
|
||||
check: bool(r.isOne())
|
||||
r.prod(aInv, a)
|
||||
check: bool(r.isOne())
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve), Iters)
|
||||
|
||||
test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion":
|
||||
proc test(Field: typedesc) =
|
||||
var z: Field
|
||||
z.setZero()
|
||||
|
||||
var zInv{.noInit.}: Field
|
||||
|
||||
zInv.inv(z)
|
||||
check: bool zInv.isZero()
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve))
|
Loading…
Reference in New Issue