Generalize the tower extensions tests 1000+ lines saved

This commit is contained in:
Mamy André-Ratsimbazafy 2020-04-14 22:40:10 +02:00 committed by Mamy Ratsimbazafy
parent 1559bda56c
commit 75557d88d8
5 changed files with 489 additions and 1477 deletions

View File

@ -26,3 +26,17 @@ macro staticFor*(idx: untyped{nkIdent}, start, stopEx: static int, body: untyped
ident("unrolledIter_" & $idx & $i),
body.replaceNodes(idx, newLit i)
)
{.experimental: "dynamicBindSym".}
macro staticFor*(ident: untyped{nkIdent}, choices: typed, body: untyped): untyped =
## matches
## staticFor(curve, TestCurves):
## body
## and unroll the body for each curve in TestCurves
result = newStmtList()
for choice in choices:
result.add nnkBlockStmt.newTree(
ident($ident & "_" & $choice.intVal),
body.replaceNodes(ident, choice)
)

View File

@ -7,535 +7,27 @@
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
unittest, times,
# Internals
../constantine/towers,
../constantine/config/[common, curves],
../constantine/arithmetic,
../constantine/config/curves,
# Test utilities
../helpers/prng_unsafe
const Iters = 128
# Random seed for reproducibility
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "test_fp12 xoshiro512** seed: ", seed
# Import: wrap in field element tests in small procedures
# otherwise they will become globals,
# and will create binary size issues.
# Also due to Nim stack scanning,
# having too many elements on the stack (a couple kB)
# will significantly slow down testing (100x is possible)
suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
test "Comparison sanity checks":
proc test(C: static Curve) =
var z, o {.noInit.}: Fp12[C]
z.setZero()
o.setOne()
check: not bool(z == o)
test(BN254_Snarks)
test(BLS12_381)
test "Addition, substraction negation are consistent":
proc test(C: static Curve) =
# Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg
# (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp12[C]
One.setOne()
a = rng.random_unsafe(Fp12[C])
a2 = a
a2.double()
na.neg(a)
b = rng.random_unsafe(Fp12[C])
b2.double(b)
nb.neg(b)
accum.diff(One, na)
accum -= b
accum += na
accum -= a2
var t{.noInit.}: Fp12[C]
t.sum(a2, b2)
t += nb
accum += t
check: bool accum.isOne()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 1 returns 1":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
block:
var r{.noinit.}: Fp12[C]
r.square(One)
check: bool(r == One)
# block:
# var r{.noinit.}: Fp12[C]
# r.prod(One, One)
# check: bool(r == One)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 2 returns 4":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
var Two: Fp12[C]
Two.double(One)
var Four: Fp12[C]
Four.double(Two)
block:
var r: Fp12[C]
r.square(Two)
check: bool(r == Four)
# block:
# var r: Fp12[C]
# r.prod(Two, Two)
# check: bool(r == Four)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 3 returns 9":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
var Three: Fp12[C]
for _ in 0 ..< 3:
Three += One
var Nine: Fp12[C]
for _ in 0 ..< 9:
Nine += One
block:
var u: Fp12[C]
u.square(Three)
check: bool(u == Nine)
# block:
# var u: Fp12[C]
# u.prod(Three, Three)
# check: bool(u == Nine)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring -3 returns 9":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
var MinusThree: Fp12[C]
for _ in 0 ..< 3:
MinusThree -= One
var Nine: Fp12[C]
for _ in 0 ..< 9:
Nine += One
block:
var u: Fp12[C]
u.square(MinusThree)
check: bool(u == Nine)
# block:
# var u: Fp12[C]
# u.prod(MinusThree, MinusThree)
# check: bool(u == Nine)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Multiplication by 0 and 1":
template test(C: static Curve, body: untyped) =
block:
proc testInstance() =
let Zero {.inject, used.} = block:
var Z{.noInit.}: Fp12[C]
Z.setZero()
Z
let One {.inject, used.} = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
for _ in 0 ..< Iters:
let x {.inject.} = rng.random_unsafe(Fp12[C])
var r{.noinit, inject.}: Fp12[C]
body
testInstance()
# test(BN254_Nogami):
# r.prod(x, Zero)
# check: bool(r == Zero)
# test(BN254_Nogami):
# r.prod(Zero, x)
# check: bool(r == Zero)
# test(BN254_Nogami):
# r.prod(x, One)
# check: bool(r == x)
# test(BN254_Nogami):
# r.prod(One, x)
# check: bool(r == x)
test(BN254_Snarks):
r.prod(x, Zero)
check: bool(r == Zero)
test(BN254_Snarks):
r.prod(Zero, x)
check: bool(r == Zero)
test(BN254_Snarks):
r.prod(x, One)
check: bool(r == x)
test(BN254_Snarks):
r.prod(One, x)
check: bool(r == x)
test(BLS12_381):
r.prod(x, Zero)
check: bool(r == Zero)
test(BLS12_381):
r.prod(Zero, x)
check: bool(r == Zero)
test(BLS12_381):
r.prod(x, One)
check: bool(r == x)
test(BLS12_381):
r.prod(One, x)
check: bool(r == x)
# test(BN462):
# r.prod(x, Zero)
# check: bool(r == Zero)
# test(BN462):
# r.prod(Zero, x)
# check: bool(r == Zero)
# test(BN462):
# r.prod(x, One)
# check: bool(r == x)
# test(BN462):
# r.prod(One, x)
# check: bool(r == x)
test "Multiplication and Squaring are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp12[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp12[C]
rMul.prod(a, a)
rSqr.square(a)
check: bool(rMul == rSqr)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring the opposite gives the same result":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp12[C])
var na{.noInit.}: Fp12[C]
na.neg(a)
var rSqr{.noInit.}, rNegSqr{.noInit.}: Fp12[C]
rSqr.square(a)
rNegSqr.square(na)
check: bool(rSqr == rNegSqr)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Multiplication and Addition/Substraction are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let factor = rng.random_unsafe(-30..30)
let a = rng.random_unsafe(Fp12[C])
if factor == 0: continue
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Fp12[C]
one.setOne()
if factor < 0:
sum.neg(a)
f.neg(one)
for i in 1 ..< -factor:
sum -= a
f -= one
else:
sum = a
f = one
for i in 1 ..< factor:
sum += a
f += one
var r{.noInit.}: Fp12[C]
r.prod(a, f)
check: bool(r == sum)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Addition is associative and commutative":
proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp12[curve])
let b = rng.random_unsafe(Fp12[curve])
let c = rng.random_unsafe(Fp12[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
# abelianGroup(BN254_Nogami)
abelianGroup(BN254_Snarks)
abelianGroup(BLS12_377)
abelianGroup(BLS12_381)
# abelianGroup(BN446)
# abelianGroup(FKM12_447)
# abelianGroup(BLS12_461)
# abelianGroup(BN462)
test "Multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp12[curve])
let b = rng.random_unsafe(Fp12[curve])
let c = rng.random_unsafe(Fp12[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
# commutativeRing(BN254_Nogami)
commutativeRing(BN254_Snarks)
commutativeRing(BLS12_377)
commutativeRing(BLS12_381)
# commutativeRing(BN446)
# commutativeRing(FKM12_447)
# commutativeRing(BLS12_461)
# commutativeRing(BN462)
test "Extension field multiplicative inverse":
proc mulInvOne(curve: static Curve) =
var one: Fp12[curve]
one.setOne()
block: # Inverse of 1 is 1
var r {.noInit.}: Fp12[curve]
r.inv(one)
check: bool(r == one)
var aInv, r{.noInit.}: Fp12[curve]
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp12[curve])
aInv.inv(a)
r.prod(a, aInv)
check: bool(r == one)
r.prod(aInv, a)
check: bool(r == one)
# mulInvOne(BN254_Nogami)
mulInvOne(BN254_Snarks)
mulInvOne(BLS12_377)
mulInvOne(BLS12_381)
# mulInvOne(BN446)
# mulInvOne(FKM12_447)
# mulInvOne(BLS12_461)
# mulInvOne(BN462)
test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion":
proc test(curve: static Curve) =
var z: Fp12[curve]
z.setZero()
var zInv{.noInit.}: Fp12[curve]
zInv.inv(z)
check: bool zInv.isZero()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
./test_fp_tower_template
const TestCurves = [
# BN254_Nogami
BN254_Snarks,
BLS12_377,
BLS12_381,
# BN446
# FKM12_447
# BLS12_461
# BN462
]
runTowerTests(
ExtDegree = 12,
Iters = 128,
TestCurves = TestCurves,
moduleName = "test_fp12",
testSuiteDesc = "𝔽p12 = 𝔽p6[w] (irreducible polynomial w²-γ = 0) -> 𝔽p12 point (a, b) with coordinate a + bw and γ quadratic non-residue in 𝔽p6"
)

View File

@ -7,425 +7,27 @@
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
unittest, times,
# Internals
../constantine/towers,
../constantine/config/[common, curves],
../constantine/arithmetic,
../constantine/config/curves,
# Test utilities
../helpers/prng_unsafe
const Iters = 128
# Random seed for reproducibility
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "test_fp2 xoshiro512** seed: ", seed
# Import: wrap in field element tests in small procedures
# otherwise they will become globals,
# and will create binary size issues.
# Also due to Nim stack scanning,
# having too many elements on the stack (a couple kB)
# will significantly slow down testing (100x is possible)
suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
test "Comparison sanity checks":
proc test(C: static Curve) =
var z, o {.noInit.}: Fp2[C]
z.setZero()
o.setOne()
check: not bool(z == o)
test(BN254_Snarks)
test(BLS12_381)
test "Fp2 '1' coordinates in canonical domain":
template test(C: static Curve) =
block:
proc testInstance() =
let oneFp2 = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
let oneBig = block:
var O{.noInit.}: typeof(C.Mod)
O.setOne()
O
var r: typeof(C.Mod)
r.redc(oneFp2.c0.mres, C.Mod, C.getNegInvModWord(), canUseNoCarryMontyMul = false)
check:
bool(r == oneBig)
bool(oneFp2.c1.mres.isZero())
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_381)
test "Addition, substraction negation are consistent":
proc test(C: static Curve) =
# Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg
# (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp2[C]
One.setOne()
a = rng.random_unsafe(Fp2[C])
a2 = a
a2.double()
na.neg(a)
b = rng.random_unsafe(Fp2[C])
b2.double(b)
nb.neg(b)
accum.diff(One, na)
accum -= b
accum += na
accum -= a2
var t{.noInit.}: Fp2[C]
t.sum(a2, b2)
t += nb
accum += t
check: bool accum.isOne()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 1 returns 1":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
block:
var r{.noinit.}: Fp2[C]
r.square(One)
check: bool(r == One)
block:
var r{.noinit.}: Fp2[C]
r.prod(One, One)
check: bool(r == One)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Multiplication by 0 and 1":
template test(C: static Curve, body: untyped) =
block:
proc testInstance() =
let Zero {.inject.} = block:
var Z{.noInit.}: Fp2[C]
Z.setZero()
Z
let One {.inject.} = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
for _ in 0 ..< Iters:
let x {.inject.} = rng.random_unsafe(Fp2[C])
var r{.noinit, inject.}: Fp2[C]
body
testInstance()
# test(BN254_Nogami):
# r.prod(x, Zero)
# check: bool(r == Zero)
# test(BN254_Nogami):
# r.prod(Zero, x)
# check: bool(r == Zero)
# test(BN254_Nogami):
# r.prod(x, One)
# check: bool(r == x)
# test(BN254_Nogami):
# r.prod(One, x)
# check: bool(r == x)
test(BN254_Snarks):
r.prod(x, Zero)
check: bool(r == Zero)
test(BN254_Snarks):
r.prod(Zero, x)
check: bool(r == Zero)
test(BN254_Snarks):
r.prod(x, One)
check: bool(r == x)
test(BN254_Snarks):
r.prod(One, x)
check: bool(r == x)
test(BLS12_381):
r.prod(x, Zero)
check: bool(r == Zero)
test(BLS12_381):
r.prod(Zero, x)
check: bool(r == Zero)
test(BLS12_381):
r.prod(x, One)
check: bool(r == x)
test(BLS12_381):
r.prod(One, x)
check: bool(r == x)
test "Multiplication and Squaring are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp2[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp2[C]
rMul.prod(a, a)
rSqr.square(a)
check: bool(rMul == rSqr)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring the opposite gives the same result":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp2[C])
var na{.noInit.}: Fp2[C]
na.neg(a)
var rSqr{.noInit.}, rNegSqr{.noInit.}: Fp2[C]
rSqr.square(a)
rNegSqr.square(na)
check: bool(rSqr == rNegSqr)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Multiplication and Addition/Substraction are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let factor = rng.random_unsafe(-30..30)
let a = rng.random_unsafe(Fp2[C])
if factor == 0: continue
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Fp2[C]
one.setOne()
if factor < 0:
sum.neg(a)
f.neg(one)
for i in 1 ..< -factor:
sum -= a
f -= one
else:
sum = a
f = one
for i in 1 ..< factor:
sum += a
f += one
var r{.noInit.}: Fp2[C]
r.prod(a, f)
check: bool(r == sum)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Addition is associative and commutative":
proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp2[curve])
let b = rng.random_unsafe(Fp2[curve])
let c = rng.random_unsafe(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
# abelianGroup(BN254_Nogami)
abelianGroup(BN254_Snarks)
abelianGroup(BLS12_377)
abelianGroup(BLS12_381)
# abelianGroup(BN446)
# abelianGroup(FKM12_447)
# abelianGroup(BLS12_461)
# abelianGroup(BN462)
test "Multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp2[curve])
let b = rng.random_unsafe(Fp2[curve])
let c = rng.random_unsafe(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
# commutativeRing(BN254_Nogami)
commutativeRing(BN254_Snarks)
commutativeRing(BLS12_377)
commutativeRing(BLS12_381)
# commutativeRing(BN446)
# commutativeRing(FKM12_447)
# commutativeRing(BLS12_461)
# commutativeRing(BN462)
test "Extension field multiplicative inverse":
proc mulInvOne(curve: static Curve) =
var one: Fp2[curve]
one.setOne()
var aInv, r{.noInit.}: Fp2[curve]
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp2[curve])
aInv.inv(a)
r.prod(a, aInv)
check: bool(r == one)
r.prod(aInv, a)
check: bool(r == one)
# mulInvOne(BN254_Nogami)
mulInvOne(BN254_Snarks)
mulInvOne(BLS12_377)
mulInvOne(BLS12_381)
# mulInvOne(BN446)
# mulInvOne(FKM12_447)
# mulInvOne(BLS12_461)
# mulInvOne(BN462)
test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion":
proc test(curve: static Curve) =
var z: Fp2[curve]
z.setZero()
var zInv{.noInit.}: Fp2[curve]
zInv.inv(z)
check: bool zInv.isZero()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
./test_fp_tower_template
const TestCurves = [
# BN254_Nogami
BN254_Snarks,
BLS12_377,
BLS12_381,
# BN446
# FKM12_447
# BLS12_461
# BN462
]
runTowerTests(
ExtDegree = 2,
Iters = 128,
TestCurves = TestCurves,
moduleName = "test_fp2",
testSuiteDesc = "𝔽p2 = 𝔽p[u] (irreducible polynomial u²-β = 0) -> 𝔽p2 point (a, b) with coordinate a + bu and β quadratic non-residue in 𝔽p"
)

View File

@ -7,535 +7,27 @@
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
unittest, times,
# Internals
../constantine/towers,
../constantine/config/[common, curves],
../constantine/arithmetic,
../constantine/config/curves,
# Test utilities
../helpers/prng_unsafe
const Iters = 128
# Random seed for reproducibility
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "test_fp6 xoshiro512** seed: ", seed
# Import: wrap in field element tests in small procedures
# otherwise they will become globals,
# and will create binary size issues.
# Also due to Nim stack scanning,
# having too many elements on the stack (a couple kB)
# will significantly slow down testing (100x is possible)
suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
test "Comparison sanity checks":
proc test(C: static Curve) =
var z, o {.noInit.}: Fp6[C]
z.setZero()
o.setOne()
check: not bool(z == o)
test(BN254_Snarks)
test(BLS12_381)
test "Addition, substraction negation are consistent":
proc test(C: static Curve) =
# Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg
# (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp6[C]
One.setOne()
a = rng.random_unsafe(Fp6[C])
a2 = a
a2.double()
na.neg(a)
b = rng.random_unsafe(Fp6[C])
b2.double(b)
nb.neg(b)
accum.diff(One, na)
accum -= b
accum += na
accum -= a2
var t{.noInit.}: Fp6[C]
t.sum(a2, b2)
t += nb
accum += t
check: bool accum.isOne()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 1 returns 1":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp6[C]
O.setOne()
O
block:
var r{.noinit.}: Fp6[C]
r.square(One)
check: bool(r == One)
block:
var r{.noinit.}: Fp6[C]
r.prod(One, One)
check: bool(r == One)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 2 returns 4":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp6[C]
O.setOne()
O
var Two: Fp6[C]
Two.double(One)
var Four: Fp6[C]
Four.double(Two)
block:
var r: Fp6[C]
r.square(Two)
check: bool(r == Four)
block:
var r: Fp6[C]
r.prod(Two, Two)
check: bool(r == Four)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 3 returns 9":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp6[C]
O.setOne()
O
var Three: Fp6[C]
for _ in 0 ..< 3:
Three += One
var Nine: Fp6[C]
for _ in 0 ..< 9:
Nine += One
block:
var u: Fp6[C]
u.square(Three)
check: bool(u == Nine)
block:
var u: Fp6[C]
u.prod(Three, Three)
check: bool(u == Nine)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring -3 returns 9":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp6[C]
O.setOne()
O
var MinusThree: Fp6[C]
for _ in 0 ..< 3:
MinusThree -= One
var Nine: Fp6[C]
for _ in 0 ..< 9:
Nine += One
block:
var u: Fp6[C]
u.square(MinusThree)
check: bool(u == Nine)
block:
var u: Fp6[C]
u.prod(MinusThree, MinusThree)
check: bool(u == Nine)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Multiplication by 0 and 1":
template test(C: static Curve, body: untyped) =
block:
proc testInstance() =
let Zero {.inject.} = block:
var Z{.noInit.}: Fp6[C]
Z.setZero()
Z
let One {.inject.} = block:
var O{.noInit.}: Fp6[C]
O.setOne()
O
for _ in 0 ..< Iters:
let x {.inject.} = rng.random_unsafe(Fp6[C])
var r{.noinit, inject.}: Fp6[C]
body
testInstance()
# test(BN254_Nogami):
# r.prod(x, Zero)
# check: bool(r == Zero)
# test(BN254_Nogami):
# r.prod(Zero, x)
# check: bool(r == Zero)
# test(BN254_Nogami):
# r.prod(x, One)
# check: bool(r == x)
# test(BN254_Nogami):
# r.prod(One, x)
# check: bool(r == x)
test(BN254_Snarks):
r.prod(x, Zero)
check: bool(r == Zero)
test(BN254_Snarks):
r.prod(Zero, x)
check: bool(r == Zero)
test(BN254_Snarks):
r.prod(x, One)
check: bool(r == x)
test(BN254_Snarks):
r.prod(One, x)
check: bool(r == x)
test(BLS12_381):
r.prod(x, Zero)
check: bool(r == Zero)
test(BLS12_381):
r.prod(Zero, x)
check: bool(r == Zero)
test(BLS12_381):
r.prod(x, One)
check: bool(r == x)
test(BLS12_381):
r.prod(One, x)
check: bool(r == x)
# test(BN462):
# r.prod(x, Zero)
# check: bool(r == Zero)
# test(BN462):
# r.prod(Zero, x)
# check: bool(r == Zero)
# test(BN462):
# r.prod(x, One)
# check: bool(r == x)
# test(BN462):
# r.prod(One, x)
# check: bool(r == x)
test "Multiplication and Squaring are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp6[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp6[C]
rMul.prod(a, a)
rSqr.square(a)
check: bool(rMul == rSqr)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring the opposite gives the same result":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp6[C])
var na{.noInit.}: Fp6[C]
na.neg(a)
var rSqr{.noInit.}, rNegSqr{.noInit.}: Fp6[C]
rSqr.square(a)
rNegSqr.square(na)
check: bool(rSqr == rNegSqr)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Multiplication and Addition/Substraction are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let factor = rng.random_unsafe(-30..30)
let a = rng.random_unsafe(Fp6[C])
if factor == 0: continue
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Fp6[C]
one.setOne()
if factor < 0:
sum.neg(a)
f.neg(one)
for i in 1 ..< -factor:
sum -= a
f -= one
else:
sum = a
f = one
for i in 1 ..< factor:
sum += a
f += one
var r{.noInit.}: Fp6[C]
r.prod(a, f)
check: bool(r == sum)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Addition is associative and commutative":
proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp6[curve])
let b = rng.random_unsafe(Fp6[curve])
let c = rng.random_unsafe(Fp6[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp6[curve]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
# abelianGroup(BN254_Nogami)
abelianGroup(BN254_Snarks)
abelianGroup(BLS12_377)
abelianGroup(BLS12_381)
# abelianGroup(BN446)
# abelianGroup(FKM12_447)
# abelianGroup(BLS12_461)
# abelianGroup(BN462)
test "Multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp6[curve])
let b = rng.random_unsafe(Fp6[curve])
let c = rng.random_unsafe(Fp6[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp6[curve]
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
# commutativeRing(BN254_Nogami)
commutativeRing(BN254_Snarks)
commutativeRing(BLS12_377)
commutativeRing(BLS12_381)
# commutativeRing(BN446)
# commutativeRing(FKM12_447)
# commutativeRing(BLS12_461)
# commutativeRing(BN462)
test "Extension field multiplicative inverse":
proc mulInvOne(curve: static Curve) =
var one: Fp6[curve]
one.setOne()
block: # Inverse of 1 is 1
var r {.noInit.}: Fp6[curve]
r.inv(one)
check: bool(r == one)
var aInv, r{.noInit.}: Fp6[curve]
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp6[curve])
aInv.inv(a)
r.prod(a, aInv)
check: bool(r == one)
r.prod(aInv, a)
check: bool(r == one)
# mulInvOne(BN254_Nogami)
mulInvOne(BN254_Snarks)
mulInvOne(BLS12_377)
mulInvOne(BLS12_381)
# mulInvOne(BN446)
# mulInvOne(FKM12_447)
# mulInvOne(BLS12_461)
# mulInvOne(BN462)
test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion":
proc test(curve: static Curve) =
var z: Fp6[curve]
z.setZero()
var zInv{.noInit.}: Fp6[curve]
zInv.inv(z)
check: bool zInv.isZero()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
./test_fp_tower_template
const TestCurves = [
# BN254_Nogami
BN254_Snarks,
BLS12_377,
BLS12_381,
# BN446
# FKM12_447
# BLS12_461
# BN462
]
runTowerTests(
ExtDegree = 6,
Iters = 128,
TestCurves = TestCurves,
moduleName = "test_fp6",
testSuiteDesc = "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³-ξ = 0) -> 𝔽p6 point (a, b, c) with coordinate a + bv + cv² and ξ cubic non-residue in 𝔽p2"
)

View File

@ -0,0 +1,412 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Template tests for towered extension fields
#
# ############################################################
import
# Standard library
std/[unittest, times],
# Internals
../constantine/towers,
../constantine/config/[common, curves],
../constantine/arithmetic,
# Test utilities
../helpers/[prng_unsafe, static_for]
template ExtField(degree: static int, curve: static Curve): untyped =
when degree == 2:
Fp2[curve]
elif degree == 6:
Fp6[curve]
elif degree == 12:
Fp12[curve]
else:
{.error: "Unconfigured extension degree".}
proc runTowerTests*[N](
ExtDegree: static int,
Iters: static int,
TestCurves: static array[N, Curve],
moduleName: string,
testSuiteDesc: string
) =
# Random seed for reproducibility
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo moduleName, " xoshiro512** seed: ", seed
suite testSuiteDesc:
test "Comparison sanity checks":
proc test(Field: typedesc) =
var z, o {.noInit.}: Field
z.setZero()
o.setOne()
check: not bool(z == o)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve))
test "Addition, substraction negation are consistent":
proc test(Field: typedesc) =
# Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg
# (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Field
One.setOne()
a = rng.random_unsafe(Field)
a2 = a
a2.double()
na.neg(a)
b = rng.random_unsafe(Field)
b2.double(b)
nb.neg(b)
accum.diff(One, na)
accum -= b
accum += na
accum -= a2
var t{.noInit.}: Field
t.sum(a2, b2)
t += nb
accum += t
check: bool accum.isOne()
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve))
test "Squaring 1 returns 1":
proc test(Field: typedesc) =
let One = block:
var O{.noInit.}: Field
O.setOne()
O
block:
var r{.noinit.}: Field
r.square(One)
check: bool(r == One)
block:
var r{.noinit.}: Field
r.prod(One, One)
check: bool(r == One)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve))
test "Squaring 2 returns 4":
proc test(Field: typedesc) =
let One = block:
var O{.noInit.}: Field
O.setOne()
O
var Two: Field
Two.double(One)
var Four: Field
Four.double(Two)
block:
var r: Field
r.square(Two)
check: bool(r == Four)
block:
var r: Field
r.prod(Two, Two)
check: bool(r == Four)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve))
test "Squaring 3 returns 9":
proc test(Field: typedesc) =
let One = block:
var O{.noInit.}: Field
O.setOne()
O
var Three: Field
for _ in 0 ..< 3:
Three += One
var Nine: Field
for _ in 0 ..< 9:
Nine += One
block:
var u: Field
u.square(Three)
check: bool(u == Nine)
block:
var u: Field
u.prod(Three, Three)
check: bool(u == Nine)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve))
test "Squaring -3 returns 9":
proc test(Field: typedesc) =
let One = block:
var O{.noInit.}: Field
O.setOne()
O
var MinusThree: Field
for _ in 0 ..< 3:
MinusThree -= One
var Nine: Field
for _ in 0 ..< 9:
Nine += One
block:
var u: Field
u.square(MinusThree)
check: bool(u == Nine)
block:
var u: Field
u.prod(MinusThree, MinusThree)
check: bool(u == Nine)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve))
test "Multiplication by 0 and 1":
template test(Field: typedesc, body: untyped) =
block:
proc testInstance() =
let Z {.inject.} = block:
var Z{.noInit.}: Field
Z.setZero()
Z
let O {.inject.} = block:
var O{.noInit.}: Field
O.setOne()
O
for _ in 0 ..< Iters:
let x {.inject.} = rng.random_unsafe(Field)
var r{.noinit, inject.}: Field
body
testInstance()
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve)):
r.prod(x, Z)
check: bool(r == Z)
test(ExtField(ExtDegree, curve)):
r.prod(Z, x)
check: bool(r == Z)
test(ExtField(ExtDegree, curve)):
r.prod(x, O)
check: bool(r == x)
test(ExtField(ExtDegree, curve)):
r.prod(O, x)
check: bool(r == x)
test "Multiplication and Squaring are consistent":
proc test(Field: typedesc, Iters: static int) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Field)
var rMul{.noInit.}, rSqr{.noInit.}: Field
rMul.prod(a, a)
rSqr.square(a)
check: bool(rMul == rSqr)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve), Iters)
test "Squaring the opposite gives the same result":
proc test(Field: typedesc, Iters: static int) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Field)
var na{.noInit.}: Field
na.neg(a)
var rSqr{.noInit.}, rNegSqr{.noInit.}: Field
rSqr.square(a)
rNegSqr.square(na)
check: bool(rSqr == rNegSqr)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve), Iters)
test "Multiplication and Addition/Substraction are consistent":
proc test(Field: typedesc, Iters: static int) =
for _ in 0 ..< Iters:
let factor = rng.random_unsafe(-30..30)
let a = rng.random_unsafe(Field)
if factor == 0: continue
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Field
one.setOne()
if factor < 0:
sum.neg(a)
f.neg(one)
for i in 1 ..< -factor:
sum -= a
f -= one
else:
sum = a
f = one
for i in 1 ..< factor:
sum += a
f += one
var r{.noInit.}: Field
r.prod(a, f)
check: bool(r == sum)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve), Iters)
test "Addition is associative and commutative":
proc test(Field: typedesc, Iters: static int) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Field)
let b = rng.random_unsafe(Field)
let c = rng.random_unsafe(Field)
var tmp1{.noInit.}, tmp2{.noInit.}: Field
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve), Iters)
test "Multiplication is associative and commutative":
proc test(Field: typedesc, Iters: static int) =
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Field)
let b = rng.random_unsafe(Field)
let c = rng.random_unsafe(Field)
var tmp1{.noInit.}, tmp2{.noInit.}: Field
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve), Iters)
test "Extension field multiplicative inverse":
proc test(Field: typedesc, Iters: static int) =
var aInv, r{.noInit.}: Field
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Field)
aInv.inv(a)
r.prod(a, aInv)
check: bool(r.isOne())
r.prod(aInv, a)
check: bool(r.isOne())
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve), Iters)
test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion":
proc test(Field: typedesc) =
var z: Field
z.setZero()
var zInv{.noInit.}: Field
zInv.inv(z)
check: bool zInv.isZero()
staticFor(curve, TestCurves):
test(ExtField(ExtDegree, curve))