Frobenius endomorphism ψ = φ−1 πp φ (psi = untwist-Frobenius-Twist) (#78)
* Sage script for frobenius isogeny * Implement ψ (Psi) - Untwist-Frobenius-Twist Endomorphism on G2 * Implement sparse mul for frpbenius endomorphism * Implement optimized psi2
This commit is contained in:
parent
c8e4346414
commit
4a308c2148
|
@ -62,6 +62,7 @@ const testDesc: seq[tuple[path: string, useGMP: bool]] = @[
|
|||
("tests/t_ec_wstrass_prj_g2_mul_distri_bls12_381.nim", false),
|
||||
("tests/t_ec_wstrass_prj_g2_mul_vs_ref_bls12_381.nim", false),
|
||||
# Elliptic curve arithmetic vs Sagemath
|
||||
("tests/t_ec_frobenius.nim", false),
|
||||
("tests/t_ec_sage_bn254.nim", false),
|
||||
("tests/t_ec_sage_bls12_381.nim", false),
|
||||
# Edge cases highlighted by past bugs
|
||||
|
|
|
@ -32,6 +32,11 @@ import
|
|||
when UseASM_X86_64:
|
||||
import ./limbs_asm_modular_x86
|
||||
|
||||
when nimvm:
|
||||
from ../config/precompute import montyResidue_precompute
|
||||
else:
|
||||
discard
|
||||
|
||||
export Fp
|
||||
|
||||
# No exceptions allowed
|
||||
|
@ -43,13 +48,16 @@ export Fp
|
|||
#
|
||||
# ############################################################
|
||||
|
||||
func fromBig*[C: static Curve](T: type Fp[C], src: BigInt): Fp[C] {.noInit, inline.} =
|
||||
## Convert a BigInt to its Montgomery form
|
||||
result.mres.montyResidue(src, C.Mod, C.getR2modP(), C.getNegInvModWord(), C.canUseNoCarryMontyMul())
|
||||
|
||||
func fromBig*[C: static Curve](dst: var Fp[C], src: BigInt) {.inline.}=
|
||||
## Convert a BigInt to its Montgomery form
|
||||
dst.mres.montyResidue(src, C.Mod, C.getR2modP(), C.getNegInvModWord(), C.canUseNoCarryMontyMul())
|
||||
when nimvm:
|
||||
dst.mres.montyResidue_precompute(src, C.Mod, C.getR2modP(), C.getNegInvModWord())
|
||||
else:
|
||||
dst.mres.montyResidue(src, C.Mod, C.getR2modP(), C.getNegInvModWord(), C.canUseNoCarryMontyMul())
|
||||
|
||||
func fromBig*[C: static Curve](T: type Fp[C], src: BigInt): Fp[C] {.noInit, inline.} =
|
||||
## Convert a BigInt to its Montgomery form
|
||||
result.fromBig(src)
|
||||
|
||||
func toBig*(src: Fp): auto {.noInit, inline.} =
|
||||
## Convert a finite-field element to a BigInt in natural representation
|
||||
|
|
|
@ -522,7 +522,7 @@ func montyMul_precompute(r: var BigInt, a, b, M: BigInt, m0ninv: BaseType) =
|
|||
t.limbs[N-1] = SecretWord(tmp)
|
||||
addC(carry, tN, tNp1, 0, carry)
|
||||
|
||||
discard t.csub(M, (tN != 0) or not(t < M))
|
||||
discard t.csub(M, (tN != 0) or not(precompute.`<`(t, M)))
|
||||
r = t
|
||||
|
||||
func montyResidue_precompute*(r: var BigInt, a, M, r2modM: BigInt,
|
||||
|
|
|
@ -226,4 +226,4 @@ func scalarMul*(
|
|||
scratchSpace: array[1 shl 4, ECP_SWei_Proj]
|
||||
scalarCanonicalBE: array[(scalar.bits+7)div 8, byte] # canonical big endian representation
|
||||
scalarCanonicalBE.exportRawUint(scalar, bigEndian) # Export is constant-time
|
||||
P.scalarMulGeneric(scratchSpace)
|
||||
P.scalarMulGeneric(scalarCanonicalBE, scratchSpace)
|
||||
|
|
|
@ -53,3 +53,9 @@ func fromHex*(dst: var Fp2, c0, c1: string) {.raises: [ValueError].}=
|
|||
## β is the quadratic non-residue chosen to construct 𝔽p2
|
||||
dst.c0.fromHex(c0)
|
||||
dst.c1.fromHex(c1)
|
||||
|
||||
func fromHex*(T: typedesc[Fp2], c0, c1: string): T {.raises: [ValueError].}=
|
||||
## Convert 2 coordinates to an element of 𝔽p2
|
||||
## with dst = c0 + β * c1
|
||||
## β is the quadratic non-residue chosen to construct 𝔽p2
|
||||
result.fromHex(c0, c1)
|
||||
|
|
|
@ -0,0 +1,185 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import
|
||||
std/macros,
|
||||
../config/[common, curves],
|
||||
../io/io_towers,
|
||||
../towers, ../arithmetic
|
||||
|
||||
# Frobenius automorphism
|
||||
# ------------------------------------------------------------
|
||||
#
|
||||
# https://en.wikipedia.org/wiki/Frobenius_endomorphism
|
||||
# For p prime
|
||||
#
|
||||
# a^p (mod p) ≡ a (mod p)
|
||||
#
|
||||
# Also
|
||||
#
|
||||
# (a + b)^p (mod p) ≡ a^p + b^p (mod p)
|
||||
# ≡ a + b (mod p)
|
||||
#
|
||||
# Because p is prime and all expanded terms (from binomial expansion)
|
||||
# besides a^p and b^p are divisible by p
|
||||
|
||||
# For 𝔽p2, with `u` the quadratic non-residue (usually the complex 𝑖)
|
||||
# (a + u b)^p² (mod p²) ≡ a + u^p² b (mod p²)
|
||||
#
|
||||
# For 𝔽p2, frobenius acts like the conjugate
|
||||
# whether u = √-1 = i
|
||||
# or √-2 or √-5
|
||||
|
||||
func frobenius*(r: var Fp2, a: Fp2, k: static int = 1) {.inline.} =
|
||||
## Computes a^(p^k)
|
||||
## The p-power frobenius automorphism on 𝔽p2
|
||||
r.c0 = a.c0
|
||||
when (k and 1) == 1:
|
||||
r.c1.neg(a.c1)
|
||||
else:
|
||||
r.c1 = a.c1
|
||||
|
||||
# Frobenius endomorphism
|
||||
# ------------------------------------------------------------
|
||||
# TODO: generate those constants via Sage in a Json file
|
||||
# and parse at compile-time
|
||||
|
||||
# Constants:
|
||||
# Assuming embedding degree of 12 and a sextic twist
|
||||
# with SNR the sextic non-residue
|
||||
#
|
||||
# BN254_Snarks is a D-Twist: SNR^((p-1)/6)
|
||||
const FrobConst_BN254_Snarks_psi1_coef1 = Fp2[BN254_Snarks].fromHex(
|
||||
"0x1284b71c2865a7dfe8b99fdd76e68b605c521e08292f2176d60b35dadcc9e470",
|
||||
"0x246996f3b4fae7e6a6327cfe12150b8e747992778eeec7e5ca5cf05f80f362ac"
|
||||
)
|
||||
# SNR^((p-1)/3)
|
||||
const FrobConst_BN254_Snarks_psi1_coef2 = Fp2[BN254_Snarks].fromHex(
|
||||
"0x2fb347984f7911f74c0bec3cf559b143b78cc310c2c3330c99e39557176f553d",
|
||||
"0x16c9e55061ebae204ba4cc8bd75a079432ae2a1d0b7c9dce1665d51c640fcba2"
|
||||
)
|
||||
# SNR^((p-1)/2)
|
||||
const FrobConst_BN254_Snarks_psi1_coef3 = Fp2[BN254_Snarks].fromHex(
|
||||
"0x63cf305489af5dcdc5ec698b6e2f9b9dbaae0eda9c95998dc54014671a0135a",
|
||||
"0x7c03cbcac41049a0704b5a7ec796f2b21807dc98fa25bd282d37f632623b0e3"
|
||||
)
|
||||
# norm(SNR)^((p-1)/3)
|
||||
const FrobConst_BN254_Snarks_psi2_coef2 = Fp2[BN254_Snarks].fromHex(
|
||||
"0x30644e72e131a0295e6dd9e7e0acccb0c28f069fbb966e3de4bd44e5607cfd48",
|
||||
"0x0"
|
||||
)
|
||||
|
||||
# BLS12_377 is a D-Twist: SNR^((p-1)/6)
|
||||
const FrobConst_BLS12_377_psi1_coef1 = Fp2[BLS12_377].fromHex(
|
||||
"0x9a9975399c019633c1e30682567f915c8a45e0f94ebc8ec681bf34a3aa559db57668e558eb0188e938a9d1104f2031",
|
||||
"0x0"
|
||||
)
|
||||
# SNR^((p-1)/3)
|
||||
const FrobConst_BLS12_377_psi1_coef2 = Fp2[BLS12_377].fromHex(
|
||||
"0x9b3af05dd14f6ec619aaf7d34594aabc5ed1347970dec00452217cc900000008508c00000000002",
|
||||
"0x0"
|
||||
)
|
||||
# SNR^((p-1)/2)
|
||||
const FrobConst_BLS12_377_psi1_coef3 = Fp2[BLS12_377].fromHex(
|
||||
"0x1680a40796537cac0c534db1a79beb1400398f50ad1dec1bce649cf436b0f6299588459bff27d8e6e76d5ecf1391c63",
|
||||
"0x0"
|
||||
)
|
||||
# norm(SNR)^((p-1)/3)
|
||||
const FrobConst_BLS12_377_psi2_coef2 = Fp2[BLS12_377].fromHex(
|
||||
"0x9b3af05dd14f6ec619aaf7d34594aabc5ed1347970dec00452217cc900000008508c00000000001",
|
||||
"0x0"
|
||||
)
|
||||
|
||||
# BLS12_381 is a M-twist: (1/SNR)^((p-1)/6)
|
||||
const FrobConst_BLS12_381_psi1_coef1 = Fp2[BLS12_381].fromHex(
|
||||
"0x5b2cfd9013a5fd8df47fa6b48b1e045f39816240c0b8fee8beadf4d8e9c0566c63a3e6e257f87329b18fae980078116",
|
||||
"0x5b2cfd9013a5fd8df47fa6b48b1e045f39816240c0b8fee8beadf4d8e9c0566c63a3e6e257f87329b18fae980078116"
|
||||
)
|
||||
# (1/SNR)^((p-1)/3)
|
||||
const FrobConst_BLS12_381_psi1_coef2 = Fp2[BLS12_381].fromHex(
|
||||
"0x0",
|
||||
"0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaad"
|
||||
)
|
||||
# (1/SNR)^((p-1)/2)
|
||||
const FrobConst_BLS12_381_psi1_coef3 = Fp2[BLS12_381].fromHex(
|
||||
"0x135203e60180a68ee2e9c448d77a2cd91c3dedd930b1cf60ef396489f61eb45e304466cf3e67fa0af1ee7b04121bdea2",
|
||||
"0x6af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09"
|
||||
)
|
||||
# norm(SNR)^((p-1)/3)
|
||||
const FrobConst_BLS12_381_psi2_coef2 = Fp2[BLS12_381].fromHex(
|
||||
"0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac",
|
||||
"0x0"
|
||||
)
|
||||
|
||||
{.experimental: "dynamicBindSym".}
|
||||
|
||||
macro frobConst(C: static Curve, psipow, coefpow: static int): untyped =
|
||||
return bindSym("FrobConst_" & $C & "_psi" & $psipow & "_coef" & $coefpow)
|
||||
|
||||
template mulCheckSparse[Fp2](a: var Fp2, b: Fp2) =
|
||||
when b.c0.isZero().bool:
|
||||
a.mul_sparse_by_0y(b)
|
||||
elif b.c1.isZero().bool:
|
||||
a.mul_sparse_by_x0(b)
|
||||
else:
|
||||
a *= b
|
||||
|
||||
func frobenius_psi*[PointG2](r: var PointG2, P: PointG2) =
|
||||
## "Untwist-Frobenius-Twist" endomorphism
|
||||
## r = ψ(P)
|
||||
for coordR, coordP in fields(r, P):
|
||||
coordR.frobenius(coordP, 1)
|
||||
|
||||
# With ξ (xi) the sextic non-residue
|
||||
# c = ξ^((p-1)/6) for D-Twist
|
||||
# c = (1/ξ)^((p-1)/6) for M-Twist
|
||||
#
|
||||
# c1_2 = c²
|
||||
# c1_3 = c³
|
||||
|
||||
r.x.mulCheckSparse frobConst(PointG2.F.C, psipow=1, coefpow=2)
|
||||
r.y.mulCheckSparse frobConst(PointG2.F.C, psipow=1, coefpow=3)
|
||||
|
||||
func frobenius_psi2*[PointG2](r: var PointG2, P: PointG2) =
|
||||
## "Untwist-Frobenius-Twist" endomorphism applied twice
|
||||
## r = ψ(ψ(P))
|
||||
for coordR, coordP in fields(r, P):
|
||||
coordR.frobenius(coordP, 2)
|
||||
|
||||
# With ξ (xi) the sextic non-residue
|
||||
# c = ξ for D-Twist
|
||||
# c = (1/ξ) for M-Twist
|
||||
#
|
||||
# frobenius(a) = conj(a) = a^p
|
||||
#
|
||||
# c1_2 = (c^((p-1)/6))² = c^((p-1)/3)
|
||||
# c1_3 = (c^((p-1)/6))³ = c^((p-1)/2)
|
||||
#
|
||||
# c2_2 = c1_2 * frobenius(c1_2) = c^((p-1)/3) * c^((p-1)/3)^p
|
||||
# = c^((p-1)/3) * conj(c)^((p-1)/3)
|
||||
# = norm(c)^((p-1)/3)
|
||||
#
|
||||
# c2_3 = c1_3 * frobenius(c1_3) = c^((p-1)/2) * c^((p-1)/2)^p
|
||||
# = c^((p-1)/2) * conj(c)^((p-1)/2)
|
||||
# = norm(c)^((p-1)/2)
|
||||
# We prove that c2_3 ≡ -1 (mod p²) with the following:
|
||||
#
|
||||
# - Whether c = ξ or c = (1/ξ), c is a quadratic non-residue (QNR) in 𝔽p2
|
||||
# because:
|
||||
# - ξ is quadratic non-residue as it is a sextic non-residue
|
||||
# by construction of the tower extension
|
||||
# - if a is QNR then 1/a is also a QNR
|
||||
# - Then c^((p²-1)/2) ≡ -1 (mod p²) from the Legendre symbol in 𝔽p2
|
||||
#
|
||||
# c2_3 = c^((p-1)/2) * c^((p-1)/2)^p = c^((p+1)*(p-1)/2)
|
||||
# = c^((p²-1)/2)
|
||||
# c2_3 ≡ -1 (mod p²)
|
||||
# QED
|
||||
|
||||
r.x.mulCheckSparse frobConst(PointG2.F.C, psipow=2, coefpow=2)
|
||||
r.y.neg(r.y)
|
|
@ -117,7 +117,9 @@ template `-`*[T: Ct](x: T): T =
|
|||
## Unary minus returns the two-complement representation
|
||||
## of an unsigned integer
|
||||
# We could use "not(x) + 1" but the codegen is not optimal
|
||||
block:
|
||||
when nimvm:
|
||||
not(x) + T(1)
|
||||
else: # Use C so that compiler uses the "neg" instructions
|
||||
var neg: T
|
||||
{.emit:[neg, " = -", x, ";"].}
|
||||
neg
|
||||
|
|
|
@ -138,6 +138,26 @@ func prod_complex(r: var QuadraticExt, a, b: QuadraticExt) =
|
|||
# - Function calls?
|
||||
# - push/pop stack?
|
||||
|
||||
func mul_sparse_complex_by_0y(r: var QuadraticExt, a, sparseB: QuadraticExt) =
|
||||
## Multiply `a` by `b` with sparse coordinates (0, y)
|
||||
## On a complex quadratic extension field 𝔽p2 = 𝔽p[𝑖]
|
||||
#
|
||||
# r0 = a0 b0 - a1 b1
|
||||
# r1 = (a0 + a1) (b0 + b1) - a0 b0 - a1 b1 (Karatsuba)
|
||||
#
|
||||
# with b0 = 0, hence
|
||||
#
|
||||
# r0 = - a1 b1
|
||||
# r1 = (a0 + a1) b1 - a1 b1 = a0 b1
|
||||
mixin fromComplexExtension
|
||||
static: doAssert r.fromComplexExtension()
|
||||
|
||||
template b(): untyped = sparseB
|
||||
|
||||
r.c0.prod(a.c1, b.c1)
|
||||
r.c0.neg(r.c0)
|
||||
r.c1.prod(a.c0, b.c1)
|
||||
|
||||
# Commutative ring implementation for generic quadratic extension fields
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
@ -205,6 +225,24 @@ func prod_generic(r: var QuadraticExt, a, b: QuadraticExt) =
|
|||
# r0 <- a0 b0 + β a1 b1
|
||||
r.c0 += NonResidue * t
|
||||
|
||||
func mul_sparse_generic_by_x0(r: var QuadraticExt, a, sparseB: QuadraticExt) =
|
||||
## Multiply `a` by `b` with sparse coordinates (x, 0)
|
||||
## On a generic quadratic extension field
|
||||
# Algorithm (with β the non-residue in the base field)
|
||||
#
|
||||
# r0 = a0 b0 + β a1 b1
|
||||
# r1 = (a0 + a1) (b0 + b1) - a0 b0 - a1 b1 (Karatsuba)
|
||||
#
|
||||
# with b1 = 0, hence
|
||||
#
|
||||
# r0 = a0 b0
|
||||
# r1 = (a0 + a1) b0 - a0 b0 = a1 b0
|
||||
mixin prod
|
||||
template b(): untyped = sparseB
|
||||
|
||||
r.c0.prod(a.c0, b.c0)
|
||||
r.c1.prod(a.c1, b.c0)
|
||||
|
||||
# Exported symbols
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
@ -263,6 +301,20 @@ func `*=`*(a: var QuadraticExt, b: QuadraticExt) {.inline.} =
|
|||
let t = a
|
||||
a.prod(t, b)
|
||||
|
||||
func square*(a: var QuadraticExt){.inline.} =
|
||||
func square*(a: var QuadraticExt) {.inline.} =
|
||||
let t = a
|
||||
a.square(t)
|
||||
|
||||
func mul_sparse_by_0y*(a: var QuadraticExt, sparseB: QuadraticExt) {.inline.} =
|
||||
## Sparse in-place multiplication
|
||||
mixin fromComplexExtension
|
||||
when a.fromComplexExtension():
|
||||
let t = a
|
||||
a.mul_sparse_complex_by_0y(t, sparseB)
|
||||
else:
|
||||
{.error: "Not implemented".}
|
||||
|
||||
func mul_sparse_by_x0*(a: var QuadraticExt, sparseB: QuadraticExt) {.inline.} =
|
||||
## Sparse in-place multiplication
|
||||
let t = a
|
||||
a.mul_sparse_generic_by_x0(t, sparseB)
|
||||
|
|
|
@ -14,21 +14,23 @@
|
|||
# ############################################################
|
||||
#
|
||||
# This module derives a BLS12 curve parameters from
|
||||
# its base parameter u
|
||||
# its base parameter x
|
||||
|
||||
def compute_curve_characteristic(u_str):
|
||||
u = sage_eval(u_str)
|
||||
p = (u - 1)^2 * (u^4 - u^2 + 1)//3 + u
|
||||
r = u^4 - u^2 + 1
|
||||
def compute_curve_characteristic(x_str):
|
||||
x = sage_eval(x_str)
|
||||
p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
|
||||
r = x^4 - x^2 + 1
|
||||
t = x + 1
|
||||
|
||||
print(f'BLS12 family - {p.nbits()} bits')
|
||||
print(' Prime modulus: 0x' + p.hex())
|
||||
print(' Curve order: 0x' + r.hex())
|
||||
print(' Parameter u: ' + u_str)
|
||||
if u < 0:
|
||||
print(' Parameter u (hex): -0x' + (-u).hex())
|
||||
print(' Prime modulus p: 0x' + p.hex())
|
||||
print(' Curve order r: 0x' + r.hex())
|
||||
print(' trace t: 0x' + t.hex())
|
||||
print(' Parameter x: ' + x_str)
|
||||
if x < 0:
|
||||
print(' Parameter x (hex): -0x' + (-x).hex())
|
||||
else:
|
||||
print(' Parameter u (hex): 0x' + u.hex())
|
||||
print(' Parameter x (hex): 0x' + x.hex())
|
||||
|
||||
print()
|
||||
|
||||
|
@ -61,11 +63,11 @@ def compute_curve_characteristic(u_str):
|
|||
print(f' GLV-2 decomposition of s into (k1, k2) on G1')
|
||||
print(f' (k1, k2) = (s, 0) - 𝛼1 b1 - 𝛼2 b2')
|
||||
print(f' 𝛼i = 𝛼\u0302i * s / r')
|
||||
print(f' Lattice b1: ' + str(['0x' + b.hex() for b in [u^2-1, -1]]))
|
||||
print(f' Lattice b2: ' + str(['0x' + b.hex() for b in [1, u^2]]))
|
||||
print(f' Lattice b1: ' + str(['0x' + b.hex() for b in [x^2-1, -1]]))
|
||||
print(f' Lattice b2: ' + str(['0x' + b.hex() for b in [1, x^2]]))
|
||||
|
||||
# Babai rounding
|
||||
ahat1 = u^2
|
||||
ahat1 = x^2
|
||||
ahat2 = 1
|
||||
# We want a1 = ahat1 * s/r with m = 2 (for a 2-dim decomposition) and r the curve order
|
||||
# To handle rounding errors we instead multiply by
|
||||
|
|
|
@ -14,21 +14,23 @@
|
|||
# ############################################################
|
||||
#
|
||||
# This module derives a BN curve parameters from
|
||||
# its base parameter u
|
||||
# its base parameterx
|
||||
|
||||
def compute_curve_characteristic(u_str):
|
||||
u = sage_eval(u_str)
|
||||
p = 36*u^4 + 36*u^3 + 24*u^2 + 6*u + 1
|
||||
r = 36*u^4 + 36*u^3 + 18*u^2 + 6*u + 1
|
||||
def compute_curve_characteristic(x_str):
|
||||
x = sage_eval(x_str)
|
||||
p = 36*x^4 + 36*x^3 + 24*x^2 + 6*x + 1
|
||||
r = 36*x^4 + 36*x^3 + 18*x^2 + 6*x + 1
|
||||
t = 6*x^2 + 1
|
||||
|
||||
print(f'BN family - {p.nbits()} bits')
|
||||
print(' Prime modulus p: 0x' + p.hex())
|
||||
print(' Curve order r: 0x' + r.hex())
|
||||
print(' Parameter u: ' + u_str)
|
||||
if u < 0:
|
||||
print(' Parameter u (hex): -0x' + (-u).hex())
|
||||
print(' trace t: 0x' + t.hex())
|
||||
print(' Parameterx: ' + x_str)
|
||||
if x < 0:
|
||||
print(' Parameterx (hex): -0x' + (-x).hex())
|
||||
else:
|
||||
print(' Parameter u (hex): 0x' + u.hex())
|
||||
print(' Parameterx (hex): 0x' +x.hex())
|
||||
|
||||
print(f' p mod 3: ' + str(p % 3))
|
||||
print(f' p mod 4: ' + str(p % 4))
|
||||
|
@ -61,12 +63,12 @@ def compute_curve_characteristic(u_str):
|
|||
print(f' GLV-2 decomposition of s into (k1, k2) on G1')
|
||||
print(f' (k1, k2) = (s, 0) - 𝛼1 b1 - 𝛼2 b2')
|
||||
print(f' 𝛼i = 𝛼\u0302i * s / r')
|
||||
print(f' Lattice b1: ' + str(['0x' + b.hex() for b in [2*u+1, 6*u^2+4*u+1]]))
|
||||
print(f' Lattice b2: ' + str(['0x' + b.hex() for b in [6*u^2+2*u, -2*u-1]]))
|
||||
print(f' Lattice b1: ' + str(['0x' + b.hex() for b in [2*x+1, 6*x^2+4*x+1]]))
|
||||
print(f' Lattice b2: ' + str(['0x' + b.hex() for b in [6*x^2+2*x, -2*x-1]]))
|
||||
|
||||
# Babai rounding
|
||||
ahat1 = 2*u+1
|
||||
ahat2 = 6*u^2+4*u+1
|
||||
ahat1 = 2*x+1
|
||||
ahat2 = 6*x^2+4*x+1
|
||||
# We want a1 = ahat1 * s/r with m = 2 (for a 2-dim decomposition) and r the curve order
|
||||
# To handle rounding errors we instead multiply by
|
||||
# 𝜈 = (2^WordBitWidth)^w (i.e. the same as the R magic constant for Montgomery arithmetic)
|
||||
|
|
|
@ -0,0 +1,147 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# BLS12-377
|
||||
# Frobenius Endomorphism
|
||||
# Untwist-Frobenius-Twist isogeny
|
||||
#
|
||||
# ############################################################
|
||||
|
||||
# Parameters
|
||||
x = 3 * 2^46 * (7 * 13 * 499) + 1
|
||||
p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
|
||||
r = x^4 - x^2 + 1
|
||||
t = x + 1
|
||||
print('p : ' + p.hex())
|
||||
print('r : ' + r.hex())
|
||||
print('t : ' + t.hex())
|
||||
|
||||
# Finite fields
|
||||
Fp = GF(p)
|
||||
K2.<u> = PolynomialRing(Fp)
|
||||
Fp2.<beta> = Fp.extension(u^2+5) # √-5 quadratic non-residue
|
||||
# K6.<v> = PolynomialRing(F2)
|
||||
# Fp6.<eta> = Fp2.extension(v^3-Fp2([0, 1])
|
||||
# K12.<w> = PolynomialRing(Fp6)
|
||||
# Fp12.<gamma> = Fp6.extension(w^2-eta)
|
||||
|
||||
# Curves
|
||||
b = 1
|
||||
SNR = Fp2([0, 1]) # √-5 sextic non-residue
|
||||
G1 = EllipticCurve(Fp, [0, b])
|
||||
G2 = EllipticCurve(Fp2, [0, b/SNR])
|
||||
|
||||
# Utilities
|
||||
def fp2_to_hex(a):
|
||||
v = vector(a)
|
||||
return Integer(v[0]).hex() + ' + β * ' + Integer(v[1]).hex()
|
||||
|
||||
# Frobenius constants (D type: use SNR, M type use 1/SNR)
|
||||
FrobConst_psi = SNR^((p-1)/6)
|
||||
FrobConst_psi_2 = FrobConst_psi * FrobConst_psi
|
||||
FrobConst_psi_3 = FrobConst_psi_2 * FrobConst_psi
|
||||
print('FrobConst_psi : ' + fp2_to_hex(FrobConst_psi))
|
||||
print('FrobConst_psi_2 : ' + fp2_to_hex(FrobConst_psi_2))
|
||||
print('FrobConst_psi_3 : ' + fp2_to_hex(FrobConst_psi_3))
|
||||
|
||||
print('')
|
||||
FrobConst_psi2_2 = FrobConst_psi_2 * FrobConst_psi_2**p
|
||||
FrobConst_psi2_3 = FrobConst_psi_3 * FrobConst_psi_3**p
|
||||
print('FrobConst_psi2_2 : ' + fp2_to_hex(FrobConst_psi2_2))
|
||||
print('FrobConst_psi2_3 : ' + fp2_to_hex(FrobConst_psi2_3))
|
||||
|
||||
print('')
|
||||
FrobConst_psi3_2 = FrobConst_psi_2 * FrobConst_psi2_2**p
|
||||
FrobConst_psi3_3 = FrobConst_psi_3 * FrobConst_psi2_3**p
|
||||
print('FrobConst_psi3_2 : ' + fp2_to_hex(FrobConst_psi3_2))
|
||||
print('FrobConst_psi3_3 : ' + fp2_to_hex(FrobConst_psi3_3))
|
||||
|
||||
# Recap, with ξ (xi) the sextic non-residue
|
||||
# psi_2 = (ξ^((p-1)/6))^2 = ξ^((p-1)/3)
|
||||
# psi_3 = psi_2 * ξ^((p-1)/6) = ξ^((p-1)/3) * ξ^((p-1)/6) = ξ^((p-1)/2)
|
||||
#
|
||||
# Reminder, in 𝔽p2, frobenius(a) = a^p = conj(a)
|
||||
# psi2_2 = psi_2 * psi_2^p = ξ^((p-1)/3) * ξ^((p-1)/3)^p = ξ^((p-1)/3) * frobenius(ξ)^((p-1)/3)
|
||||
# = norm(ξ)^((p-1)/3)
|
||||
# psi2_3 = psi_3 * psi_3^p = ξ^((p-1)/2) * ξ^((p-1)/2)^p = ξ^((p-1)/2) * frobenius(ξ)^((p-1)/2)
|
||||
# = norm(ξ)^((p-1)/2)
|
||||
#
|
||||
# In Fp²:
|
||||
# - quadratic non-residues respect the equation a^((p²-1)/2) ≡ -1 (mod p²) by the Legendre symbol
|
||||
# - sextic non-residues are also quadratic non-residues so ξ^((p²-1)/2) ≡ -1 (mod p²)
|
||||
#
|
||||
# We have norm(ξ)^((p-1)/2) = (ξ*frobenius(ξ))^((p-1)/2) = (ξ*(ξ^p))^((p-1)/2) = ξ^(p+1)^(p-1)/2
|
||||
# = ξ^((p²-1)/2)
|
||||
# And ξ^((p²-1)/2) ≡ -1 (mod p²)
|
||||
# So psi2_3 ≡ -1 (mod p²)
|
||||
#
|
||||
# TODO: explain why psi3_2 = [0, -1]
|
||||
|
||||
# Frobenius Fp2
|
||||
A = Fp2([5, 7])
|
||||
Aconj = Fp2([5, -7])
|
||||
AF = A.frobenius(1) # or pth_power(1)
|
||||
AF2 = A.frobenius(2)
|
||||
AF3 = A.frobenius(3)
|
||||
print('')
|
||||
print('A : ' + fp2_to_hex(A))
|
||||
print('A conjugate: ' + fp2_to_hex(Aconj))
|
||||
print('')
|
||||
print('AF1 : ' + fp2_to_hex(AF))
|
||||
print('AF2 : ' + fp2_to_hex(AF2))
|
||||
print('AF3 : ' + fp2_to_hex(AF3))
|
||||
|
||||
def psi(P):
|
||||
(Px, Py, Pz) = P
|
||||
return G2([
|
||||
FrobConst_psi_2 * Px.frobenius(),
|
||||
FrobConst_psi_3 * Py.frobenius()
|
||||
# Pz.frobenius() - Always 1 after extract
|
||||
])
|
||||
|
||||
def psi2(P):
|
||||
(Px, Py, Pz) = P
|
||||
return G2([
|
||||
FrobConst_psi2_2 * Px.frobenius(2),
|
||||
FrobConst_psi2_3 * Py.frobenius(2)
|
||||
# Pz - Always 1 after extract
|
||||
])
|
||||
|
||||
# Test generator
|
||||
set_random_seed(1337)
|
||||
|
||||
# Vectors
|
||||
print('\nTest vectors:')
|
||||
for i in range(4):
|
||||
P = G2.random_point()
|
||||
|
||||
(Px, Py, Pz) = P
|
||||
vPx = vector(Px)
|
||||
vPy = vector(Py)
|
||||
# Pz = vector(Pz)
|
||||
print(f'\nTest {i}')
|
||||
print(' Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex())
|
||||
print(' Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex())
|
||||
|
||||
# Galbraith-Lin-Scott, 2008, Theorem 1
|
||||
# Fuentes-Castaneda et al, 2011, Equation (2)
|
||||
assert psi(psi(P)) - t*psi(P) + p*P == G2([0, 1, 0])
|
||||
|
||||
# Galbraith-Scott, 2008, Lemma 1
|
||||
# k-th cyclotomic polynomial with k = 12
|
||||
assert psi2(psi2(P)) - psi2(P) + P == G2([0, 1, 0])
|
||||
|
||||
assert psi(psi(P)) == psi2(P)
|
||||
|
||||
(Qx, Qy, Qz) = psi(P)
|
||||
vQx = vector(Qx)
|
||||
vQy = vector(Qy)
|
||||
print(' Qx: ' + Integer(vQx[0]).hex() + ' + β * ' + Integer(vQx[1]).hex())
|
||||
print(' Qy: ' + Integer(vQy[0]).hex() + ' + β * ' + Integer(vQy[1]).hex())
|
|
@ -0,0 +1,150 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# BLS12-381
|
||||
# Frobenius Endomorphism
|
||||
# Untwist-Frobenius-Twist isogeny
|
||||
#
|
||||
# ############################################################
|
||||
|
||||
# Parameters
|
||||
x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
|
||||
p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
|
||||
r = x^4 - x^2 + 1
|
||||
t = x + 1
|
||||
print('p : ' + p.hex())
|
||||
print('r : ' + r.hex())
|
||||
print('t : ' + t.hex())
|
||||
|
||||
# Finite fields
|
||||
Fp = GF(p)
|
||||
K2.<u> = PolynomialRing(Fp)
|
||||
Fp2.<beta> = Fp.extension(u^2+1)
|
||||
# K6.<v> = PolynomialRing(F2)
|
||||
# Fp6.<eta> = Fp2.extension(v^3-Fp2([1, 1])
|
||||
# K12.<w> = PolynomialRing(Fp6)
|
||||
# Fp12.<gamma> = Fp6.extension(w^2-eta)
|
||||
|
||||
# Curves
|
||||
b = 4
|
||||
SNR = Fp2([1, 1])
|
||||
G1 = EllipticCurve(Fp, [0, b])
|
||||
G2 = EllipticCurve(Fp2, [0, b*SNR])
|
||||
|
||||
# Utilities
|
||||
def fp2_to_hex(a):
|
||||
v = vector(a)
|
||||
return Integer(v[0]).hex() + ' + β * ' + Integer(v[1]).hex()
|
||||
|
||||
# Frobenius constants (D type: use SNR, M type use 1/SNR)
|
||||
print('1/sextic_non_residue: ' + fp2_to_hex(1/SNR))
|
||||
FrobConst_psi = (1/SNR)^((p-1)/6)
|
||||
FrobConst_psi_2 = FrobConst_psi * FrobConst_psi
|
||||
FrobConst_psi_3 = FrobConst_psi_2 * FrobConst_psi
|
||||
print('FrobConst_psi : ' + fp2_to_hex(FrobConst_psi))
|
||||
print('FrobConst_psi_2 : ' + fp2_to_hex(FrobConst_psi_2))
|
||||
print('FrobConst_psi_3 : ' + fp2_to_hex(FrobConst_psi_3))
|
||||
|
||||
print('')
|
||||
FrobConst_psi2_2 = FrobConst_psi_2 * FrobConst_psi_2**p
|
||||
FrobConst_psi2_3 = FrobConst_psi_3 * FrobConst_psi_3**p
|
||||
print('FrobConst_psi2_2 : ' + fp2_to_hex(FrobConst_psi2_2))
|
||||
print('FrobConst_psi2_3 : ' + fp2_to_hex(FrobConst_psi2_3))
|
||||
|
||||
print('')
|
||||
FrobConst_psi3_2 = FrobConst_psi_2 * FrobConst_psi2_2**p
|
||||
FrobConst_psi3_3 = FrobConst_psi_3 * FrobConst_psi2_3**p
|
||||
print('FrobConst_psi3_2 : ' + fp2_to_hex(FrobConst_psi3_2))
|
||||
print('FrobConst_psi3_3 : ' + fp2_to_hex(FrobConst_psi3_3))
|
||||
|
||||
# Recap, with ξ (xi) the sextic non-residue
|
||||
# psi_2 = ((1/ξ)^((p-1)/6))^2 = (1/ξ)^((p-1)/3)
|
||||
# psi_3 = psi_2 * (1/ξ)^((p-1)/6) = (1/ξ)^((p-1)/3) * (1/ξ)^((p-1)/6) = (1/ξ)^((p-1)/2)
|
||||
#
|
||||
# Reminder, in 𝔽p2, frobenius(a) = a^p = conj(a)
|
||||
# psi2_2 = psi_2 * psi_2^p = (1/ξ)^((p-1)/3) * (1/ξ)^((p-1)/3)^p = (1/ξ)^((p-1)/3) * frobenius((1/ξ))^((p-1)/3)
|
||||
# = norm(1/ξ)^((p-1)/3)
|
||||
# psi2_3 = psi_3 * psi_3^p = (1/ξ)^((p-1)/2) * (1/ξ)^((p-1)/2)^p = (1/ξ)^((p-1)/2) * frobenius((1/ξ))^((p-1)/2)
|
||||
# = norm(1/ξ)^((p-1)/2)
|
||||
#
|
||||
# In Fp²:
|
||||
# - quadratic non-residues respect the equation a^((p²-1)/2) ≡ -1 (mod p²) by the Legendre symbol
|
||||
# - sextic non-residues are also quadratic non-residues so ξ^((p²-1)/2) ≡ -1 (mod p²)
|
||||
# - QRT(1/a) = QRT(a) with QRT the quadratic residuosity test
|
||||
#
|
||||
# We have norm(ξ)^((p-1)/2) = (ξ*frobenius(ξ))^((p-1)/2) = (ξ*(ξ^p))^((p-1)/2) = ξ^(p+1)^(p-1)/2
|
||||
# = ξ^((p²-1)/2)
|
||||
# And ξ^((p²-1)/2) ≡ -1 (mod p²)
|
||||
# So psi2_3 ≡ -1 (mod p²)
|
||||
#
|
||||
# TODO: explain why psi3_2 = [0, -1]
|
||||
|
||||
# Frobenius Fp2
|
||||
A = Fp2([5, 7])
|
||||
Aconj = Fp2([5, -7])
|
||||
AF = A.frobenius(1) # or pth_power(1)
|
||||
AF2 = A.frobenius(2)
|
||||
AF3 = A.frobenius(3)
|
||||
print('')
|
||||
print('A : ' + fp2_to_hex(A))
|
||||
print('A conjugate: ' + fp2_to_hex(Aconj))
|
||||
print('')
|
||||
print('AF1 : ' + fp2_to_hex(AF))
|
||||
print('AF2 : ' + fp2_to_hex(AF2))
|
||||
print('AF3 : ' + fp2_to_hex(AF3))
|
||||
|
||||
def psi(P):
|
||||
(Px, Py, Pz) = P
|
||||
return G2([
|
||||
FrobConst_psi_2 * Px.frobenius(),
|
||||
FrobConst_psi_3 * Py.frobenius()
|
||||
# Pz.frobenius() - Always 1 after extract
|
||||
])
|
||||
|
||||
def psi2(P):
|
||||
(Px, Py, Pz) = P
|
||||
return G2([
|
||||
FrobConst_psi2_2 * Px.frobenius(2),
|
||||
FrobConst_psi2_3 * Py.frobenius(2)
|
||||
# Pz - Always 1 after extract
|
||||
])
|
||||
|
||||
# Test generator
|
||||
set_random_seed(1337)
|
||||
|
||||
# Vectors
|
||||
print('\nTest vectors:')
|
||||
for i in range(4):
|
||||
P = G2.random_point()
|
||||
|
||||
(Px, Py, Pz) = P
|
||||
vPx = vector(Px)
|
||||
vPy = vector(Py)
|
||||
# Pz = vector(Pz)
|
||||
print(f'\nTest {i}')
|
||||
print(' Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex())
|
||||
print(' Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex())
|
||||
|
||||
# Galbraith-Lin-Scott, 2008, Theorem 1
|
||||
# Fuentes-Castaneda et al, 2011, Equation (2)
|
||||
assert psi(psi(P)) - t*psi(P) + p*P == G2([0, 1, 0])
|
||||
|
||||
# Galbraith-Scott, 2008, Lemma 1
|
||||
# k-th cyclotomic polynomial with k = 12
|
||||
assert psi2(psi2(P)) - psi2(P) + P == G2([0, 1, 0])
|
||||
|
||||
assert psi(psi(P)) == psi2(P)
|
||||
|
||||
|
||||
(Qx, Qy, Qz) = psi(P)
|
||||
vQx = vector(Qx)
|
||||
vQy = vector(Qy)
|
||||
print(' Qx: ' + Integer(vQx[0]).hex() + ' + β * ' + Integer(vQx[1]).hex())
|
||||
print(' Qy: ' + Integer(vQy[0]).hex() + ' + β * ' + Integer(vQy[1]).hex())
|
|
@ -0,0 +1,147 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# BLS12-381
|
||||
# Frobenius Endomorphism
|
||||
# Untwist-Frobenius-Twist isogeny
|
||||
#
|
||||
# ############################################################
|
||||
|
||||
# Parameters
|
||||
x = Integer('0x44E992B44A6909F1')
|
||||
p = 36*x^4 + 36*x^3 + 24*x^2 + 6*x + 1
|
||||
r = 36*x^4 + 36*x^3 + 18*x^2 + 6*x + 1
|
||||
t = 6*x^2 + 1
|
||||
cofactor = 1
|
||||
print('p : ' + p.hex())
|
||||
print('r : ' + r.hex())
|
||||
print('t : ' + t.hex())
|
||||
|
||||
# Finite fields
|
||||
Fp = GF(p)
|
||||
K2.<u> = PolynomialRing(Fp)
|
||||
Fp2.<beta> = Fp.extension(u^2+1)
|
||||
# K6.<v> = PolynomialRing(F2)
|
||||
# Fp6.<eta> = Fp2.extension(v^3-Fp2([9, 1]))
|
||||
# K12.<w> = PolynomialRing(Fp6)
|
||||
# K12.<gamma> = F6.extension(w^2-eta)
|
||||
|
||||
# Curves
|
||||
b = 3
|
||||
SNR = Fp2([9, 1])
|
||||
G1 = EllipticCurve(Fp, [0, b])
|
||||
G2 = EllipticCurve(Fp2, [0, b/SNR])
|
||||
|
||||
# Utilities
|
||||
def fp2_to_hex(a):
|
||||
v = vector(a)
|
||||
return Integer(v[0]).hex() + ' + β * ' + Integer(v[1]).hex()
|
||||
|
||||
# Frobenius constants (D type: use SNR, M type use 1/SNR)
|
||||
FrobConst_psi = SNR^((p-1)/6)
|
||||
FrobConst_psi_2 = FrobConst_psi * FrobConst_psi
|
||||
FrobConst_psi_3 = FrobConst_psi_2 * FrobConst_psi
|
||||
print('FrobConst_psi : ' + fp2_to_hex(FrobConst_psi))
|
||||
print('FrobConst_psi_2 : ' + fp2_to_hex(FrobConst_psi_2))
|
||||
print('FrobConst_psi_3 : ' + fp2_to_hex(FrobConst_psi_3))
|
||||
|
||||
print('')
|
||||
FrobConst_psi2_2 = FrobConst_psi_2 * FrobConst_psi_2^p
|
||||
FrobConst_psi2_3 = FrobConst_psi_3 * FrobConst_psi_3^p
|
||||
print('FrobConst_psi2_2 : ' + fp2_to_hex(FrobConst_psi2_2))
|
||||
print('FrobConst_psi2_3 : ' + fp2_to_hex(FrobConst_psi2_3))
|
||||
|
||||
print('')
|
||||
FrobConst_psi3_2 = FrobConst_psi_2 * FrobConst_psi2_2^p
|
||||
FrobConst_psi3_3 = FrobConst_psi_3 * FrobConst_psi2_3^p
|
||||
print('FrobConst_psi3_2 : ' + fp2_to_hex(FrobConst_psi3_2))
|
||||
print('FrobConst_psi3_3 : ' + fp2_to_hex(FrobConst_psi3_3))
|
||||
|
||||
# Recap, with ξ (xi) the sextic non-residue
|
||||
# psi_2 = (ξ^((p-1)/6))^2 = ξ^((p-1)/3)
|
||||
# psi_3 = psi_2 * ξ^((p-1)/6) = ξ^((p-1)/3) * ξ^((p-1)/6) = ξ^((p-1)/2)
|
||||
#
|
||||
# Reminder, in 𝔽p2, frobenius(a) = a^p = conj(a)
|
||||
# psi2_2 = psi_2 * psi_2^p = ξ^((p-1)/3) * ξ^((p-1)/3)^p = ξ^((p-1)/3) * frobenius(ξ)^((p-1)/3)
|
||||
# = norm(ξ)^((p-1)/3)
|
||||
# psi2_3 = psi_3 * psi_3^p = ξ^((p-1)/2) * ξ^((p-1)/2)^p = ξ^((p-1)/2) * frobenius(ξ)^((p-1)/2)
|
||||
# = norm(ξ)^((p-1)/2)
|
||||
#
|
||||
# In Fp²:
|
||||
# - quadratic non-residues respect the equation a^((p²-1)/2) ≡ -1 (mod p²) by the Legendre symbol
|
||||
# - sextic non-residues are also quadratic non-residues so ξ^((p²-1)/2) ≡ -1 (mod p²)
|
||||
#
|
||||
# We have norm(ξ)^((p-1)/2) = (ξ*frobenius(ξ))^((p-1)/2) = (ξ*(ξ^p))^((p-1)/2) = ξ^(p+1)^(p-1)/2
|
||||
# = ξ^((p²-1)/2)
|
||||
# And ξ^((p²-1)/2) ≡ -1 (mod p²)
|
||||
# So psi2_3 ≡ -1 (mod p²)
|
||||
|
||||
# Frobenius Fp2
|
||||
A = Fp2([5, 7])
|
||||
Aconj = Fp2([5, -7])
|
||||
AF = A.frobenius(1) # or pth_power(1)
|
||||
AF2 = A.frobenius(2)
|
||||
AF3 = A.frobenius(3)
|
||||
print('')
|
||||
print('A : ' + fp2_to_hex(A))
|
||||
print('A conjugate: ' + fp2_to_hex(Aconj))
|
||||
print('')
|
||||
print('AF1 : ' + fp2_to_hex(AF))
|
||||
print('AF2 : ' + fp2_to_hex(AF2))
|
||||
print('AF3 : ' + fp2_to_hex(AF3))
|
||||
|
||||
def psi(P):
|
||||
(Px, Py, Pz) = P
|
||||
return G2([
|
||||
FrobConst_psi_2 * Px.frobenius(),
|
||||
FrobConst_psi_3 * Py.frobenius()
|
||||
# Pz.frobenius() - Always 1 after extract
|
||||
])
|
||||
|
||||
def psi2(P):
|
||||
(Px, Py, Pz) = P
|
||||
return G2([
|
||||
FrobConst_psi2_2 * Px.frobenius(2),
|
||||
FrobConst_psi2_3 * Py.frobenius(2)
|
||||
# Pz - Always 1 after extract
|
||||
])
|
||||
|
||||
# Test generator
|
||||
set_random_seed(1337)
|
||||
|
||||
# Vectors
|
||||
print('\nTest vectors:')
|
||||
for i in range(4):
|
||||
P = G2.random_point()
|
||||
|
||||
(Px, Py, Pz) = P
|
||||
vPx = vector(Px)
|
||||
vPy = vector(Py)
|
||||
# vPz = vector(Pz)
|
||||
print(f'\nTest {i}')
|
||||
print(' Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex())
|
||||
print(' Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex())
|
||||
# print(' Pz: ' + Integer(vPz[0]).hex() + ' + β * ' + Integer(vPz[1]).hex())
|
||||
|
||||
# Galbraith-Lin-Scott, 2008, Theorem 1
|
||||
# Fuentes-Castaneda et al, 2011, Equation (2)
|
||||
assert psi(psi(P)) - t*psi(P) + p*P == G2([0, 1, 0])
|
||||
|
||||
# Galbraith-Scott, 2008, Lemma 1
|
||||
# k-th cyclotomic polynomial with k = 12
|
||||
assert psi2(psi2(P)) - psi2(P) + P == G2([0, 1, 0])
|
||||
|
||||
assert psi(psi(P)) == psi2(P)
|
||||
|
||||
(Qx, Qy, Qz) = psi(P)
|
||||
vQx = vector(Qx)
|
||||
vQy = vector(Qy)
|
||||
print(' Qx: ' + Integer(vQx[0]).hex() + ' + β * ' + Integer(vQx[1]).hex())
|
||||
print(' Qy: ' + Integer(vQy[0]).hex() + ' + β * ' + Integer(vQy[1]).hex())
|
|
@ -26,15 +26,30 @@ proc mainArith() =
|
|||
check: x.isZero().bool
|
||||
test "isZero for non-zero":
|
||||
block:
|
||||
var x = fromHex(BigInt[128], "0x00000000_00000000_00000000_00000001")
|
||||
let x = fromHex(BigInt[128], "0x00000000_00000000_00000000_00000001")
|
||||
check: not x.isZero().bool
|
||||
block:
|
||||
var x = fromHex(BigInt[128], "0x00000000_00000001_00000000_00000000")
|
||||
let x = fromHex(BigInt[128], "0x00000000_00000001_00000000_00000000")
|
||||
check: not x.isZero().bool
|
||||
block:
|
||||
var x = fromHex(BigInt[128], "0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF")
|
||||
let x = fromHex(BigInt[128], "0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF")
|
||||
check: not x.isZero().bool
|
||||
|
||||
test "isZero for zero (compile-time)":
|
||||
const x = BigInt[128]()
|
||||
check: static(x.isZero().bool)
|
||||
test "isZero for non-zero (compile-time)":
|
||||
block:
|
||||
const x = fromHex(BigInt[128], "0x00000000_00000000_00000000_00000001")
|
||||
check: static(not x.isZero().bool)
|
||||
block:
|
||||
const x = fromHex(BigInt[128], "0x00000000_00000001_00000000_00000000")
|
||||
check: static(not x.isZero().bool)
|
||||
block:
|
||||
const x = fromHex(BigInt[128], "0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF")
|
||||
check: static(not x.isZero().bool)
|
||||
|
||||
|
||||
suite "Arithmetic operations - Addition" & " [" & $WordBitwidth & "-bit mode]":
|
||||
test "Adding 2 zeros":
|
||||
var a = fromHex(BigInt[128], "0x00000000_00000000_00000000_00000000")
|
||||
|
@ -622,9 +637,9 @@ proc mainModularInverse() =
|
|||
check: bool(r == expected)
|
||||
|
||||
mainArith()
|
||||
mainMul()
|
||||
mainMulHigh()
|
||||
mainModular()
|
||||
mainNeg()
|
||||
mainCopySwap()
|
||||
mainModularInverse()
|
||||
# mainMul()
|
||||
# mainMulHigh()
|
||||
# mainModular()
|
||||
# mainNeg()
|
||||
# mainCopySwap()
|
||||
# mainModularInverse()
|
||||
|
|
|
@ -0,0 +1,324 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
|
||||
import
|
||||
# Standard library
|
||||
std/[times, unittest],
|
||||
# Internals
|
||||
../constantine/config/[common, curves],
|
||||
../constantine/[arithmetic, towers],
|
||||
../constantine/io/[io_bigints, io_ec],
|
||||
../constantine/elliptic/[ec_weierstrass_affine, ec_weierstrass_projective, ec_scalar_mul],
|
||||
../constantine/isogeny/frobenius,
|
||||
# Tests
|
||||
../helpers/prng_unsafe,
|
||||
./t_ec_template
|
||||
|
||||
echo "\n------------------------------------------------------\n"
|
||||
|
||||
# Random seed for reproducibility
|
||||
var rng: RngState
|
||||
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||||
rng.seed(seed)
|
||||
echo "frobenius xoshiro512** seed: ", seed
|
||||
|
||||
proc test(
|
||||
id: int,
|
||||
EC: typedesc[ECP_SWei_Proj],
|
||||
Px0, Px1, Py0, Py1: string,
|
||||
Qx0, Qx1, Qy0, Qy1: string
|
||||
) =
|
||||
|
||||
test "test " & $EC & " - " & $id:
|
||||
var P: EC
|
||||
let pOK = P.fromHex(Px0, Px1, Py0, Py1)
|
||||
doAssert pOK
|
||||
|
||||
var Q: EC
|
||||
let qOK = Q.fromHex(Qx0, Qx1, Qy0, Qy1)
|
||||
|
||||
var R{.noInit.}: EC
|
||||
|
||||
R.frobenius_psi(P)
|
||||
doAssert: bool(R == Q)
|
||||
|
||||
suite "ψ (Psi) - Untwist-Frobenius-Twist Endomorphism on G2 vs SageMath" & " [" & $WordBitwidth & "-bit mode]":
|
||||
# Generated via
|
||||
# - sage sage/frobenius_bn254_snarks.sage
|
||||
# - sage sage/frobenius_bls12_377.sage
|
||||
# - sage sage/frobenius_bls12_381.sage
|
||||
test(
|
||||
id = 0,
|
||||
EC = ECP_SWei_Proj[Fp2[BN254_Snarks]],
|
||||
Px0 = "598e4c8c14c24c90834f2debedee4db3d31fed98a5134177704bfec14f46cb5",
|
||||
Px1 = "c6fffa61daeb7caaf96983e70f164931d958c6820b205cdde19f2fa1eaaa7b1",
|
||||
Py0 = "2f5fa252a27df56f5ca2e9c3382c17e531d317d50396f3fe952704304946a5a",
|
||||
Py1 = "25f58d3c1a91b83ad645c6cf43f63b5cc36c08d920eaa9c2d7e5a8f8d9f01c6a",
|
||||
Qx0 = "14ce20d36d5ad6f84f3f13a4db7dc2e4cc1b568af633f0c1164fbb7804738071",
|
||||
Qx1 = "1689941c634aca12aecb1e20e04e9d6b22fc012b534e30436bf0cec03ff0ddde",
|
||||
Qy0 = "2eb451e1a4860bcc16a0f898c4fa5b9638975ae20fa3096ed9f3127ca6f0b6de",
|
||||
Qy1 = "317e8196e9e77ae0139c6fa6b56f7df1dd88e1f472a6c60e1c1c63065ebc71f"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 1,
|
||||
EC = ECP_SWei_Proj[Fp2[BN254_Snarks]],
|
||||
Px0 = "21014830dd88a0e7961e704cea531200866c5df46cb25aa3e2aac8d4fec64c6e",
|
||||
Px1 = "1db17d8364def10443beab6e4a055c210d3e49c7c3af31e9cfb66d829938dca7",
|
||||
Py0 = "1394ab8c346ad3eba14fa14789d3bbfc2deed5a7a510da8e9418580515d27bda",
|
||||
Py1 = "1157a26b2639a5258d62577efad8eadffd5814ada3c9b0ce6cae8d29ccafbec9",
|
||||
Qx0 = "2099f3e18a043417f28d7eac1ba96856df748201ed667467bb40b14e389e4eb1",
|
||||
Qx1 = "2870f4936ec8a10b45b407e493a883da8fb2ebd68dbb35f998bfe7a63d512498",
|
||||
Qy0 = "1dfe671f9556e11d771b0a3f0d3884883416866c889ef59cb26a1b9d74c24bb",
|
||||
Qy1 = "a348314ec66afb05f015b6f6868e3f483bb03b591d4e53d0c9d9d165b4a9d8"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 2,
|
||||
EC = ECP_SWei_Proj[Fp2[BN254_Snarks]],
|
||||
Px0 = "46f2a2be9a3e19c1bb484fc37703ff64c3d7379de22249ccf0881037948beec",
|
||||
Px1 = "10a5aaae14cb028f4ff4b81d41b712038b9f620a99e208c23504887e56831806",
|
||||
Py0 = "2e6c3ebe0f3dada0063dc59f85fe2264dc3502bf65206336106a8d39d838a7b2",
|
||||
Py1 = "1fc7d880dc104e05dfdc7f8b96a6c1f2486c6228d13a0f04d4e10b15f0c77e96",
|
||||
Qx0 = "284e28ea45121a3ec0fffd4b8d3f0c470eff76c914e6fc7527f6035cc2a4bf12",
|
||||
Qx1 = "6dd235191328f1a7245b968396a04e3f6a569491bd6bdc651092cbb95ff65c9",
|
||||
Qy0 = "24823a8704bb36a2f014c93ba78a2152e8f90ebd19e9196a4f61b15b04409fcc",
|
||||
Qy1 = "303d0b6bf9db34bdf3beb16dcdbff3a0822b6f241d27b06b3ac1f8707941b4e1"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 3,
|
||||
EC = ECP_SWei_Proj[Fp2[BN254_Snarks]],
|
||||
Px0 = "1cf3af1d41e89d8df378aa81463a978c021f27f4a48387e74655ce2cf5c1f298",
|
||||
Px1 = "36553e80e5c7c7360c7a2ae6bf1b8f68eb48804fc7eba7d2f56f09e87bbb0b1",
|
||||
Py0 = "25f03e551d74b6be3268bf001905dfbe0bcbe43a2d1aac645a3ca8650b52e551",
|
||||
Py1 = "2c24c71b843695a003dd5657dba745ce44f7708d9c5c4e0fd1f905751724a57a",
|
||||
Qx0 = "2c2381c01df71c0762db9458cc369d43a7b2a4f28861580d543010959a8790c1",
|
||||
Qx1 = "15c9e53568fe7c0d260224d5bc179ecd1bc16b09f421ed56609809c5c5c3bf9b",
|
||||
Qy0 = "1e5d31d9cda2dd3344a585ffa3273fbed22a1fdf33b45025a480f2e4c07c10ec",
|
||||
Qy1 = "a8e13d82a6d1f503ce2437733b55b17452d5cc2ff7219f684f343b9c4b09a81"
|
||||
)
|
||||
|
||||
# --------------------------------------------------------------------------
|
||||
|
||||
test(
|
||||
id = 0,
|
||||
EC = ECP_SWei_Proj[Fp2[BLS12_377]],
|
||||
Px0 = "112de13b7cd42bccdb005f2d4dc2726f360243103335ef6cf5e217e777554ae7c1deff5ddb5bcbb581fc9f13728a439",
|
||||
Px1 = "10d1a8963e5c6854d5e610ece9914f9b5619c27652be1e9ec3e87687d63ed5d45b449bf59c2481e18ac6159f75966ac",
|
||||
Py0 = "8aaf3a8660cf0edd6e97a2cd7837af1c63ec89e18f9bf4c64638662a661636b928a4f8097e6a2e8dfa11e13c51b075",
|
||||
Py1 = "163eeb32f275bc5e17546382180b0baefeea482d4da1f7d4938670c66167c7912f571ab3e0426266247b102f8351b3c",
|
||||
Qx0 = "2ffc357b6f63a3a040b9f1113d1806d35897abcc38fc7617354b9ea834f4c66dcd87e459ab6cafdcdfe2ae44f8bc5",
|
||||
Qx1 = "17f1a16aa1cfead79134b075300cb5999015f4314d82656c04871289a476451221adeb202754a4d21a57fb03f5c39aa",
|
||||
Qy0 = "1904a3f203c94c832388cda6c10aa38243c44ae61ee31472d9197d9668e37d58cc6f2181004a9520b27bddc7e523e3a",
|
||||
Qy1 = "98505fd21506437c605d28f809bd6215431154fa8175f0eaa02928130437e44840acb284f09bf3973350dac32a6dae"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 1,
|
||||
EC = ECP_SWei_Proj[Fp2[BLS12_377]],
|
||||
Px0 = "2f9318360b53c2d706061f527571e91679e6086a72ce8203ba1a04850f83bb192b29307e9b2d63feb1d23979e3f632",
|
||||
Px1 = "3cbab0789968a3a35fa5d2e2326baa40c34d11a4af05a4109350944300ce32eef74dc5e47ba46717bd8bf87604696d",
|
||||
Py0 = "14ea84922f76f2681fec869dce26141392975dcdb4f21d5fa8aec06b37bf71ba6249c219ecbaef4a266196dafb4ad19",
|
||||
Py1 = "187cac5daa215b608daab087a9c5ba4364424bb4770c4c5e33112efe931c8a87253f90db38948f3094eb71f3ba593e5",
|
||||
Qx0 = "3fdbf071e73c2b81d6c3bb7d0deb03460a6fbc13d488644023a16fa0e7bc992f9304f62c37cbd67af0d7f5ef00891c",
|
||||
Qx1 = "14c3aa3f9ee2a1a9dfd629611907842444fa49212be5732f5594f26c6bcc455d51ba78f593d344729e1eb1a32646149",
|
||||
Qy0 = "150af74166adf3ae9645178b525e3db9d0141c1b39d9259cf17ba066ea71a3b1163a8d1299a4afce6ca4ee5eb2b9ec3",
|
||||
Qy1 = "11a869dea20407de3dcfa6288d54edc4afe799c84f8308a7fd9164ea8edcc12d5eda436aafc82cd4ada3b73c9481568"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 2,
|
||||
EC = ECP_SWei_Proj[Fp2[BLS12_377]],
|
||||
Px0 = "833ca23630be463c388ea6cfcff5b0e3b055065702a84310d2c726aee14d9e140cba05be79b5cb0441816d9e8c8370",
|
||||
Px1 = "264a9755524baac8d9e53b0a45789e9dafcb6b453e965061fcfa20bb12a27d9b9417d5277ae2a499b1cfe567d75e2d",
|
||||
Py0 = "5b670b9789825e2b48101b5b6e660cf9117e29c521dad54640cb356b674b3946c98cb43909c3495fb6d6d231891b7e",
|
||||
Py1 = "8d794bfd3f87b76ef28af168999e89e6b4fe95da0a539e94a0d0215a7abb756c4b479de5d05a950edf720fd0a20d2d",
|
||||
Qx0 = "14ab7d6cb634f741384133209d3944cd455ba6abfb7568052f79dedce2a39bbb3a7e4f038a23e8c1b186444997b2f3f",
|
||||
Qx1 = "15c2626a4b919778485be345bc044717616ee7b9b97c111c2082cf0f249fc946d0aebd7d523234afd5ee40549a61978",
|
||||
Qy0 = "a783f13eeda1f3d58229008ef4b131135cf5363963dbb712be14186d83e281452b1e0a257ab4851feee7efa150247f",
|
||||
Qy1 = "11ece9f651b6ca92fe75b277fe3d98ef63cf1a8d467e786be66bb8a705c9cdf2208c715f57540f72b38a3f4cedfc066"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 3,
|
||||
EC = ECP_SWei_Proj[Fp2[BLS12_377]],
|
||||
Px0 = "14cd89e2e2755ddc086f63fd62e1f9904c3c1497243455c578a963e81b389f04e95ceafc4f47dc777579cdc82eca79b",
|
||||
Px1 = "ba8801beba0654f20ccb78783efa7a911d182ec0eb99abe10f9a3d26b46fb7f90552e4ff6beb4df4611a9072be648b",
|
||||
Py0 = "12e23bc97d891f2a047bac9c90e728cb89760c812156f96c95e36c40f1c830cf6ecbb5d407b189070d48a92eb461ea6",
|
||||
Py1 = "3b5b911592b3b4110f1690afc0c334b15dccb0eaf6d68b4361c19dfad31e55bbdc219e4328026dc31a4ec122235579",
|
||||
Qx0 = "151806c45fdb293c57f07e905ea7cbc6f3c9d3803103f7ffec8b499365925f80e63a648a02523e504238ba1417aeef3",
|
||||
Qx1 = "159018bfc69cf11ac1666efdace397117d0016e70fdff1f095ea5a5340b8e1d2e2a99ade477c8cd56184994ff8860b4",
|
||||
Qy0 = "1756e93f4b477ab09524a52e4a4551f8ffc8216fc29ec04fbdc31a236750535bd91f369171f763f73196cc5d8d1ea52",
|
||||
Qy1 = "17aad3c2d6c1918fd733c25be872c445a7afea2191a90b451f85edf7e44a8f9ae4012f7388dad8fc5ccb8e0cb0967b2"
|
||||
)
|
||||
|
||||
# --------------------------------------------------------------------------
|
||||
|
||||
test(
|
||||
id = 0,
|
||||
EC = ECP_SWei_Proj[Fp2[BLS12_381]],
|
||||
Px0 = "d6904be428a0310dbd6e15a744a774bcf9800abe27536267a5383f1ddbd7783e1dc20098a8e045e3cca66b83f6d7f0f",
|
||||
Px1 = "12107f6ef71d0d1e3bcba9e00a0675d3080519dd1b6c086bd660eb2d2bca8f276e283a891b5c0615064d7886af625cf2",
|
||||
Py0 = "c592a3546d2d61d671070909e97860822db0a389e351c1744bdbb2c472cf52f3ca3e94068b0b6f3b0121923659131f5",
|
||||
Py1 = "f3c8aef3a00761f30948689a45dfa0d48ccda74981147e3e8f4877e1784c6bec49e180be98a139e2ed9dcd36ea31c67",
|
||||
Qx0 = "1030dc4b36a818bdafe99b645008e815abe7e75826d62067787cd76e300a1a7a40e7b53d8b4e74fe78e6d9812376d294",
|
||||
Qx1 = "17fd5bb7be865765282839efa48fecbcab8be35711d2c878e2d9e874f3328dced52d2a55b1f305f231601f8e700ee6bd",
|
||||
Qy0 = "b3359ac6f39e703ceabd522c9e472c60db04086bbd8d446f11c2ebb7fb578dba1b3e064207d26ca17270fc46a008fac",
|
||||
Qy1 = "ce5fe60372147ef37f6fb2ce0fbadb1d1e911bacd1d7ffb367183a4ec475fa93552f3016942c5d0838c572d2ae6c32b"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 1,
|
||||
EC = ECP_SWei_Proj[Fp2[BLS12_381]],
|
||||
Px0 = "112de130b7cd42bccdb005f2d4dc2726f360243103335ef6cf5e217e777554ae7c1deff5ddb5bcbb581fc9f13728a439",
|
||||
Px1 = "10d1a89a63e5c6854d5e610ece9914f9b5619c27652be1e9ec3e87687d63ed5d45b449bf59c2481e18ac6159f75966ac",
|
||||
Py0 = "11261c8fcb0f4f560479547fe6b2a1c1e8b648d87e54c39f299eba8729294e99b415851d134ca31e8bb861c42e6f1022",
|
||||
Py1 = "1674a925228b822022bf721c9be8946825b9776c2c06158b330831856d5e05c5a454271d3ada3cd882cd385e2732db4d",
|
||||
Qx0 = "19a679660d4079c1ed073081951e1a6ce2c06efdd16cb782c227badcf412a61692ba9a89fb23c77a00256cc48505e2b2",
|
||||
Qx1 = "27442be7b2676bfcda0d655156695f391e6d480b5105b5cd7cee64749bb77b15ce8862d423bfca47f429e0746a5964a",
|
||||
Qy0 = "ae1d1f52e7b1445112906d8c7c6c7044f08ddd56c24d054e0cd3f3cbc0591a5164ea362c939b09bbdf3357f31dcd93e",
|
||||
Qy1 = "13662a83e7e9b26bbf5df7e1323a09770eb7345435f23207138012be9acfa6b3ee32da7df4830cb1b1cf00ca4bdccce6"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 2,
|
||||
EC = ECP_SWei_Proj[Fp2[BLS12_381]],
|
||||
Px0 = "2f93183360b53c2d706061f527571e91679e6086a72ce8203ba1a04850f83bb192b29307e9b2d63feb1d23979e3f632",
|
||||
Px1 = "3cbab0c789968a3a35fa5d2e2326baa40c34d11a4af05a4109350944300ce32eef74dc5e47ba46717bd8bf87604696d",
|
||||
Py0 = "2b8d995b0f2114442b7bbdbe5732fbf94430d6d413e1f388031f3abb956e598cb6764275a75832c1670868c458378b6",
|
||||
Py1 = "63743343c86cd84b8396413c23fd851144d607cef8b39a1eeb4dc8d4420739574e0be8c498cc26d74096201f7c40580",
|
||||
Qx0 = "1482a7b3dbdd5810c2167cfea50f6fcc076a23d78f9471205f056ce53fc93266a96969f2c627f8da2190760163d69d4e",
|
||||
Qx1 = "1106e16aa7dd71959f6a1469de3c5978e6f2177e668faf3d8616ee56a9729b671839754290cece62056ffa9bef7aec55",
|
||||
Qy0 = "6826a449ed06645081c1d9212231c4f63c98398a514d2950712bb0f4f9dfd0f83327f8623b2d9f32a9d9d3f891519cf",
|
||||
Qy1 = "19424b599275b17e6c8cfdb9c08100a30a64a0b961e91bf2a6ecb5bcd4e698fa4ef823386d488bd368213dc9b23d2ebd"
|
||||
)
|
||||
|
||||
test(
|
||||
id = 3,
|
||||
EC = ECP_SWei_Proj[Fp2[BLS12_381]],
|
||||
Px0 = "d7d1c55ddf8bd03b7a15c3ea4f8f69aee37bf282d4aac82b7bd1fd47139250b9c708997a7ff8f603e48f0471c2cfe03",
|
||||
Px1 = "d145a91934a6ad865d24ab556ae1e6c42decdd05d676b80e53365a6ff7536332859c9682e7200e40515f675415d71a3",
|
||||
Py0 = "6de67fa12af93813a42612b1e9449c7b1f160c5de004ec26ea61010e48ba38dcf158d2692f347fdc6c6332bbec7106f",
|
||||
Py1 = "8177897afa93cc9aca82eb9df71652ef7360ce3ef484041450ae14b090246f1bb46293d658540c7652df8ac48842c0c",
|
||||
Qx0 = "175a00d5aedc82a684a1af83cedb126112af904f9d84c1c2b0175f739a2805f720c9b97454c57e3c09b8231e9fe5ab7b",
|
||||
Qx1 = "fbee1da493f45154e2a9bc43b15386757c8dc0db390f9a00f1ccc49ebb14838fa391b8d10b8369294885deb2ae033ed",
|
||||
Qy0 = "169027ec8c608a49325edc87b726cec5f768acf48e80bba04d2810a7259d6b834043e65e1775c4d9181aecc4ff1430ec",
|
||||
Qy1 = "77ef6850d4a8f181a10196398cd344011a44c50dce00e18578f3526301263492086d44c7c3d1db5b12499b4033116e1"
|
||||
)
|
||||
|
||||
suite "ψ - psi(psi(P)) == psi2(P) - (Untwist-Frobenius-Twist Endomorphism)" & " [" & $WordBitwidth & "-bit mode]":
|
||||
const Iters = 8
|
||||
proc test(EC: typedesc, randZ: static bool, gen: static RandomGen) =
|
||||
for i in 0 ..< Iters:
|
||||
let P = rng.random_point(EC, randZ, gen)
|
||||
|
||||
var Q1 {.noInit.}: EC
|
||||
Q1.frobenius_psi(P)
|
||||
Q1.frobenius_psi(Q1)
|
||||
|
||||
var Q2 {.noInit.}: EC
|
||||
Q2.frobenius_psi2(P)
|
||||
|
||||
doAssert bool(Q1 == Q2), "\nIters: " & $i & "\n" &
|
||||
"P: " & P.toHex() & "\n" &
|
||||
"Q1: " & Q1.toHex() & "\n" &
|
||||
"Q2: " & Q2.toHex()
|
||||
|
||||
proc testAll(EC: typedesc) =
|
||||
test "psi(psi(P)) == psi2(P) for " & $EC:
|
||||
test(EC, randZ = false, gen = Uniform)
|
||||
test(EC, randZ = true, gen = Uniform)
|
||||
test(EC, randZ = false, gen = HighHammingWeight)
|
||||
test(EC, randZ = true, gen = HighHammingWeight)
|
||||
test(EC, randZ = false, gen = Long01Sequence)
|
||||
test(EC, randZ = true, gen = Long01Sequence)
|
||||
|
||||
testAll(ECP_SWei_Proj[Fp2[BN254_Snarks]])
|
||||
# testAll(ECP_SWei_Proj[Fp2[BLS12_377]])
|
||||
testAll(ECP_SWei_Proj[Fp2[BLS12_381]])
|
||||
|
||||
suite "ψ²(P) - [t]ψ(P) + [p]P = Inf" & " [" & $WordBitwidth & "-bit mode]":
|
||||
const Iters = 10
|
||||
proc trace(C: static Curve): auto =
|
||||
# Returns (abs(trace), isNegativeSign)
|
||||
when C == BN254_Snarks:
|
||||
# x = "0x44E992B44A6909F1"
|
||||
# t = 6x²+1
|
||||
return (BigInt[127].fromHex"0x6f4d8248eeb859fbf83e9682e87cfd47", false)
|
||||
elif C == BLS12_381:
|
||||
# x = "-(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)"
|
||||
# t = x+1
|
||||
return (BigInt[64].fromHex"0xd20100000000ffff", true)
|
||||
else:
|
||||
{.error: "Not implemented".}
|
||||
|
||||
proc test(EC: typedesc, randZ: static bool, gen: static RandomGen) =
|
||||
let trace = trace(EC.F.C)
|
||||
|
||||
for i in 0 ..< Iters:
|
||||
let P = rng.random_point(EC, randZ, gen)
|
||||
|
||||
var r {.noInit.}, psi2 {.noInit.}, tpsi {.noInit.}, pP {.noInit.}: EC
|
||||
|
||||
psi2.frobenius_psi2(P)
|
||||
tpsi.frobenius_psi(P)
|
||||
tpsi.scalarMul(trace[0]) # Should be valid for GLS scalar mul even if cofactor isn't cleared
|
||||
if trace[1]: # negative trace
|
||||
tpsi.neg()
|
||||
pP = P
|
||||
pP.scalarMul(EC.F.C.Mod) # Should be valid for GLS scalar mul even if cofactor isn't cleared
|
||||
|
||||
# ψ²(P) - [t]ψ(P) + [p]P = InfinityPoint
|
||||
r.diff(psi2, tpsi)
|
||||
r += pP
|
||||
|
||||
doAssert bool(r.isInf())
|
||||
|
||||
proc testAll(EC: typedesc) =
|
||||
test "ψ²(P) - [t]ψ(P) + [p]P = Inf for " & $EC:
|
||||
test(EC, randZ = false, gen = Uniform)
|
||||
test(EC, randZ = true, gen = Uniform)
|
||||
test(EC, randZ = false, gen = HighHammingWeight)
|
||||
test(EC, randZ = true, gen = HighHammingWeight)
|
||||
test(EC, randZ = false, gen = Long01Sequence)
|
||||
test(EC, randZ = true, gen = Long01Sequence)
|
||||
|
||||
testAll(ECP_SWei_Proj[Fp2[BN254_Snarks]])
|
||||
# testAll(ECP_SWei_Proj[Fp2[BLS12_377]])
|
||||
testAll(ECP_SWei_Proj[Fp2[BLS12_381]])
|
||||
|
||||
suite "ψ⁴(P) - ψ²(P) + P = Inf (k-th cyclotomic polynomial with embedding degree k=12)" & " [" & $WordBitwidth & "-bit mode]":
|
||||
const Iters = 10
|
||||
|
||||
proc test(EC: typedesc, randZ: static bool, gen: static RandomGen) =
|
||||
for i in 0 ..< Iters:
|
||||
let P = rng.random_point(EC, randZ, gen)
|
||||
|
||||
var r {.noInit.}, psi4 {.noInit.}, psi2 {.noInit.}: EC
|
||||
|
||||
psi2.frobenius_psi2(P)
|
||||
psi4.frobenius_psi2(psi2)
|
||||
r.diff(psi4, psi2)
|
||||
r += P
|
||||
|
||||
doAssert bool(r.isInf())
|
||||
|
||||
proc testAll(EC: typedesc) =
|
||||
test "ψ⁴(P) - ψ²(P) + P = Inf for " & $EC:
|
||||
test(EC, randZ = false, gen = Uniform)
|
||||
test(EC, randZ = true, gen = Uniform)
|
||||
test(EC, randZ = false, gen = HighHammingWeight)
|
||||
test(EC, randZ = true, gen = HighHammingWeight)
|
||||
test(EC, randZ = false, gen = Long01Sequence)
|
||||
test(EC, randZ = true, gen = Long01Sequence)
|
||||
|
||||
testAll(ECP_SWei_Proj[Fp2[BN254_Snarks]])
|
||||
# testAll(ECP_SWei_Proj[Fp2[BLS12_377]])
|
||||
testAll(ECP_SWei_Proj[Fp2[BLS12_381]])
|
|
@ -8,7 +8,7 @@
|
|||
|
||||
import
|
||||
# Standard library
|
||||
std/[unittest, times],
|
||||
std/unittest,
|
||||
# Internals
|
||||
../constantine/config/[common, curves],
|
||||
../constantine/arithmetic,
|
||||
|
|
|
@ -26,12 +26,12 @@ import
|
|||
./support/ec_reference_scalar_mult
|
||||
|
||||
type
|
||||
RandomGen = enum
|
||||
RandomGen* = enum
|
||||
Uniform
|
||||
HighHammingWeight
|
||||
Long01Sequence
|
||||
|
||||
func random_point(rng: var RngState, F: typedesc, randZ: static bool, gen: static RandomGen): F {.inline, noInit.} =
|
||||
func random_point*(rng: var RngState, F: typedesc, randZ: static bool, gen: static RandomGen): F {.inline, noInit.} =
|
||||
when not randZ:
|
||||
when gen == Uniform:
|
||||
result = rng.random_unsafe(F)
|
||||
|
|
Loading…
Reference in New Issue