constantine/helpers/prng_unsafe.nim

407 lines
15 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
Internals refactor + renewed focus on perf (#17) * Lay out the refactoring objectives and tradeoffs * Refactor the 32 and 64-bit primitives [skip ci] * BigInts and Modular BigInts compile * Make the bigints test compile * Fix modular reduction * Fix reduction tests vs GMP * Implement montegomery mul, pow, inverse, WIP finite field compilation * Make FiniteField compile * Fix exponentiation compilation * Fix Montgomery magic constant computation for 2^64 words * Fix typo in non-optimized CIOS - passing finite fields IO tests * Add limbs comparisons [skip ci] * Fix on precomputation of the Montgomery magic constant * Passing all tests including 𝔽p2 * modular addition, the test for mersenne prime was wrong * update benches * Fix "nimble test" + typo on out-of-place field addition * bigint division, normalization is needed: https://travis-ci.com/github/mratsim/constantine/jobs/298359743 * missing conversion in subborrow non-x86 fallback - https://travis-ci.com/github/mratsim/constantine/jobs/298359744 * Fix little-endian serialization * Constantine32 flag to run 32-bit constantine on 64-bit machines * IO Field test, ensure that BaseType is used instead of uint64 when the prime can field in uint32 * Implement proper addcarry and subborrow fallback for the compile-time VM * Fix export issue when the logical wordbitwidth == physical wordbitwidth - passes all tests (32-bit and 64-bit) * Fix uint128 on ARM * Fix C++ conditional copy and ARM addcarry/subborrow * Add investigation for SIGFPE in Travis * Fix debug display for unsafeDiv2n1n * multiplexer typo * moveMem bug in glibc of Ubuntu 16.04? * Was probably missing an early clobbered register annotation on conditional mov * Note on Montgomery-friendly moduli * Strongly suspect a GCC before GCC 7 codegen bug (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87139) * hex conversion was (for debugging) not taking requested order into account + inlining comment * Use 32-bit limbs on ARM64, uint128 builtin __udivti4 bug? * Revert "Use 32-bit limbs on ARM64, uint128 builtin __udivti4 bug?" This reverts commit 087f9aa7fb40bbd058d05cbd8eec7fc082911f49. * Fix subborrow fallback for non-x86 (need to maks the borrow)
2020-03-16 15:33:51 +00:00
../constantine/arithmetic/bigints,
../constantine/primitives,
../constantine/config/[common, curves],
../constantine/elliptic/[ec_weierstrass_affine, ec_weierstrass_projective],
../constantine/io/io_bigints
# ############################################################
#
# Pseudo-Random Number Generator
# Unsafe: for testing and benchmarking purposes
#
# ############################################################
#
# Our field elements for elliptic curve cryptography
# are in the 2^256~2^512 range.
# For pairings, with embedding degrees of 12 to 48
# We would need 12~48 field elements per point on the curve
#
# The recommendation by Vigna at http://prng.di.unimi.it
# is to have a period of t^2 if we need t values (i.e. about 2^1024)
# but also that for all practical purposes 2^256 period is enough
#
# We use 2^512 to cover the range the base field elements
type RngState* = object
## This is the state of a Xoshiro512** PRNG
## Unsafe: for testing and benchmarking purposes only
s: array[8, uint64]
func splitMix64(state: var uint64): uint64 =
state += 0x9e3779b97f4a7c15'u64
result = state
result = (result xor (result shr 30)) * 0xbf58476d1ce4e5b9'u64
result = (result xor (result shr 27)) * 0xbf58476d1ce4e5b9'u64
result = result xor (result shr 31)
func seed*(rng: var RngState, x: SomeInteger) =
## Seed the random number generator with a fixed seed
var sm64 = uint64(x)
rng.s[0] = splitMix64(sm64)
rng.s[1] = splitMix64(sm64)
rng.s[2] = splitMix64(sm64)
rng.s[3] = splitMix64(sm64)
rng.s[4] = splitMix64(sm64)
rng.s[5] = splitMix64(sm64)
rng.s[6] = splitMix64(sm64)
rng.s[7] = splitMix64(sm64)
func rotl(x: uint64, k: static int): uint64 {.inline.} =
return (x shl k) or (x shr (64 - k))
template `^=`(x: var uint64, y: uint64) =
x = x xor y
func next(rng: var RngState): uint64 =
## Compute a random uint64 from the input state
## using xoshiro512** algorithm by Vigna et al
## State is updated.
result = rotl(rng.s[1] * 5, 7) * 9
let t = rng.s[1] shl 11
rng.s[2] ^= rng.s[0];
rng.s[5] ^= rng.s[1];
rng.s[1] ^= rng.s[2];
rng.s[7] ^= rng.s[3];
rng.s[3] ^= rng.s[4];
rng.s[4] ^= rng.s[5];
rng.s[0] ^= rng.s[6];
rng.s[6] ^= rng.s[7];
rng.s[6] ^= t;
rng.s[7] = rotl(rng.s[7], 21);
# Integer ranges
# ------------------------------------------------------------
func random_unsafe*(rng: var RngState, maxExclusive: uint32): uint32 =
## Generate a random integer in 0 ..< maxExclusive
## Uses an unbiaised generation method
## See Lemire's algorithm modified by Melissa O'Neill
## https://www.pcg-random.org/posts/bounded-rands.html
let max = maxExclusive
var x = uint32 rng.next()
var m = x.uint64 * max.uint64
var l = uint32 m
if l < max:
var t = not(max) + 1 # -max
if t >= max:
t -= max
if t >= max:
t = t mod max
while l < t:
x = uint32 rng.next()
m = x.uint64 * max.uint64
l = uint32 m
return uint32(m shr 32)
func random_unsafe*[T: SomeInteger](rng: var RngState, inclRange: Slice[T]): T =
## Return a random integer in the given range.
## The range bounds must fit in an int32.
let maxExclusive = inclRange.b + 1 - inclRange.a
result = T(rng.random_unsafe(uint32 maxExclusive))
result += inclRange.a
# Containers
# ------------------------------------------------------------
func sample_unsafe*[T](rng: var RngState, src: openarray[T]): T =
## Return a random sample from an array
result = src[rng.random_unsafe(uint32 src.len)]
# BigInts and Fields
# ------------------------------------------------------------
#
# Statistics note:
# - A skewed distribution is not symmetric, it has a longer tail in one direction.
# for example a RNG that is not centered over 0.5 distribution of 0 and 1 but
# might produces more 1 than 0 or vice-versa.
# - A bias is a result that is consistently off from the true value i.e.
# a deviation of an estimate from the quantity under observation
func random_unsafe(rng: var RngState, a: var BigInt) =
## Initialize a standalone BigInt
for i in 0 ..< a.limbs.len:
a.limbs[i] = SecretWord(rng.next())
func random_unsafe[T](rng: var RngState, a: var T, C: static Curve) =
## Recursively initialize a BigInt (part of a field) or Field element
## Unsafe: for testing and benchmarking purposes only
when T is BigInt:
var reduced, unreduced{.noInit.}: T
rng.random_unsafe(unreduced)
# Note: a simple modulo will be biaised but it's simple and "fast"
reduced.reduce(unreduced, C.Mod)
a.montyResidue(reduced, C.Mod, C.getR2modP(), C.getNegInvModWord(), C.canUseNoCarryMontyMul())
else:
for field in fields(a):
rng.random_unsafe(field, C)
func random_word_highHammingWeight(rng: var RngState): BaseType =
let numZeros = rng.random_unsafe(WordBitWidth div 3) # Average Hamming Weight is 1-0.33/2 = 0.83
result = high(BaseType)
for _ in 0 ..< numZeros:
result = result.clearBit rng.random_unsafe(WordBitWidth)
func random_highHammingWeight(rng: var RngState, a: var BigInt) =
## Initialize a standalone BigInt
## with high Hamming weight
## to have a higher probability of triggering carries
for i in 0 ..< a.limbs.len:
a.limbs[i] = SecretWord rng.random_word_highHammingWeight()
func random_highHammingWeight[T](rng: var RngState, a: var T, C: static Curve) =
## Recursively initialize a BigInt (part of a field) or Field element
## Unsafe: for testing and benchmarking purposes only
## The result will have a high Hamming Weight
## to have a higher probability of triggering carries
when T is BigInt:
var reduced, unreduced{.noInit.}: T
rng.random_highHammingWeight(unreduced)
# Note: a simple modulo will be biaised but it's simple and "fast"
reduced.reduce(unreduced, C.Mod)
a.montyResidue(reduced, C.Mod, C.getR2modP(), C.getNegInvModWord(), C.canUseNoCarryMontyMul())
else:
for field in fields(a):
rng.random_highHammingWeight(field, C)
func random_long01Seq(rng: var RngState, a: var openArray[byte]) =
## Initialize a bytearray
## It is skewed towards producing strings of 1111... and 0000
## to trigger edge cases
# See libsecp256k1: https://github.com/bitcoin-core/secp256k1/blob/dbd41db1/src/testrand_impl.h#L90-L104
let Bits = a.len * 8
var bit = 0
zeroMem(a[0].addr, a.len)
while bit < Bits :
var now = 1 + (rng.random_unsafe(1 shl 6) * rng.random_unsafe(1 shl 5) + 16) div 31
let val = rng.sample_unsafe([0, 1])
while now > 0 and bit < Bits:
a[bit shr 3] = a[bit shr 3] or byte(val shl (bit and 7))
dec now
inc bit
func random_long01Seq(rng: var RngState, a: var BigInt) =
## Initialize a bigint
## It is skewed towards producing strings of 1111... and 0000
## to trigger edge cases
var buf: array[(a.bits + 7) div 8, byte]
rng.random_long01Seq(buf)
let order = rng.sample_unsafe([bigEndian, littleEndian])
if order == bigEndian:
a.fromRawUint(buf, bigEndian)
else:
a.fromRawUint(buf, littleEndian)
func random_long01Seq[T](rng: var RngState, a: var T, C: static Curve) =
## Recursively initialize a BigInt (part of a field) or Field element
## It is skewed towards producing strings of 1111... and 0000
## to trigger edge cases
when T is BigInt:
var reduced, unreduced{.noInit.}: T
rng.random_long01Seq(unreduced)
# Note: a simple modulo will be biaised but it's simple and "fast"
reduced.reduce(unreduced, C.Mod)
a.montyResidue(reduced, C.Mod, C.getR2modP(), C.getNegInvModWord(), C.canUseNoCarryMontyMul())
else:
for field in fields(a):
rng.random_highHammingWeight(field, C)
# Elliptic curves
# ------------------------------------------------------------
func random_unsafe[F](rng: var RngState, a: var (ECP_SWei_Proj[F] or ECP_SWei_Aff[F])) =
## Initialize a random curve point with Z coordinate == 1
## Unsafe: for testing and benchmarking purposes only
var fieldElem {.noInit.}: F
var success = CtFalse
while not bool(success):
# Euler's criterion: there are (p-1)/2 squares in a field with modulus `p`
# so we have a probability of ~0.5 to get a good point
rng.random_unsafe(fieldElem, F.C)
success = trySetFromCoordX(a, fieldElem)
func random_unsafe_with_randZ[F](rng: var RngState, a: var ECP_SWei_Proj[F]) =
## Initialize a random curve point with Z coordinate being random
## Unsafe: for testing and benchmarking purposes only
var Z{.noInit.}: F
rng.random_unsafe(Z, F.C) # If Z is zero, X will be zero and that will be an infinity point
var fieldElem {.noInit.}: F
var success = CtFalse
while not bool(success):
rng.random_unsafe(fieldElem, F.C)
success = trySetFromCoordsXandZ(a, fieldElem, Z)
func random_highHammingWeight[F](rng: var RngState, a: var (ECP_SWei_Proj[F] or ECP_SWei_Aff[F])) =
## Initialize a random curve point with Z coordinate == 1
## This will be generated with a biaised RNG with high Hamming Weight
## to trigger carry bugs
var fieldElem {.noInit.}: F
var success = CtFalse
while not bool(success):
# Euler's criterion: there are (p-1)/2 squares in a field with modulus `p`
# so we have a probability of ~0.5 to get a good point
rng.random_highHammingWeight(fieldElem, F.C)
success = trySetFromCoordX(a, fieldElem)
func random_highHammingWeight_with_randZ[F](rng: var RngState, a: var (ECP_SWei_Proj[F] or ECP_SWei_Aff[F])) =
## Initialize a random curve point with Z coordinate == 1
## This will be generated with a biaised RNG with high Hamming Weight
## to trigger carry bugs
var Z{.noInit.}: F
rng.random_highHammingWeight(Z, F.C) # If Z is zero, X will be zero and that will be an infinity point
var fieldElem {.noInit.}: F
var success = CtFalse
while not bool(success):
rng.random_highHammingWeight(fieldElem, F.C)
success = trySetFromCoordsXandZ(a, fieldElem, Z)
func random_long01Seq[F](rng: var RngState, a: var (ECP_SWei_Proj[F] or ECP_SWei_Aff[F])) =
## Initialize a random curve point with Z coordinate == 1
## This will be generated with a biaised RNG
## that produces long bitstrings of 0 and 1
## to trigger edge cases
var fieldElem {.noInit.}: F
var success = CtFalse
while not bool(success):
# Euler's criterion: there are (p-1)/2 squares in a field with modulus `p`
# so we have a probability of ~0.5 to get a good point
rng.random_long01Seq(fieldElem, F.C)
success = trySetFromCoordX(a, fieldElem)
func random_long01Seq_with_randZ[F](rng: var RngState, a: var ECP_SWei_Proj[F]) =
## Initialize a random curve point with Z coordinate == 1
## This will be generated with a biaised RNG
## that produces long bitstrings of 0 and 1
## to trigger edge cases
var Z{.noInit.}: F
rng.random_long01Seq(Z, F.C) # If Z is zero, X will be zero and that will be an infinity point
var fieldElem {.noInit.}: F
var success = CtFalse
while not bool(success):
rng.random_long01Seq(fieldElem, F.C)
success = trySetFromCoordsXandZ(a, fieldElem, Z)
# Generic over any Constantine type
# ------------------------------------------------------------
func random_unsafe*(rng: var RngState, T: typedesc): T =
## Create a random Field or Extension Field or Curve Element
## Unsafe: for testing and benchmarking purposes only
when T is (ECP_SWei_Proj or ECP_SWei_Aff):
rng.random_unsafe(result)
elif T is SomeNumber:
cast[T](rng.next()) # TODO: Rely on casting integer actually converting in C (i.e. uint64->uint32 is valid)
elif T is BigInt:
rng.random_unsafe(result)
else: # Fields
rng.random_unsafe(result, T.C)
func random_unsafe_with_randZ*(rng: var RngState, T: typedesc[ECP_SWei_Proj]): T =
## Create a random curve element with a random Z coordinate
## Unsafe: for testing and benchmarking purposes only
rng.random_unsafe_with_randZ(result)
func random_highHammingWeight*(rng: var RngState, T: typedesc): T =
## Create a random Field or Extension Field or Curve Element
## Skewed towards high Hamming Weight
when T is (ECP_SWei_Proj or ECP_SWei_Aff):
rng.random_highHammingWeight(result)
elif T is SomeNumber:
cast[T](rng.next()) # TODO: Rely on casting integer actually converting in C (i.e. uint64->uint32 is valid)
elif T is BigInt:
rng.random_highHammingWeight(result)
else: # Fields
rng.random_highHammingWeight(result, T.C)
func random_highHammingWeight_with_randZ*(rng: var RngState, T: typedesc[ECP_SWei_Proj]): T =
## Create a random curve element with a random Z coordinate
## Skewed towards high Hamming Weight
rng.random_highHammingWeight_with_randZ(result)
func random_long01Seq*(rng: var RngState, T: typedesc): T =
## Create a random Field or Extension Field or Curve Element
## Skewed towards long bitstrings of 0 or 1
when T is (ECP_SWei_Proj or ECP_SWei_Aff):
rng.random_long01Seq(result)
elif T is SomeNumber:
cast[T](rng.next()) # TODO: Rely on casting integer actually converting in C (i.e. uint64->uint32 is valid)
elif T is BigInt:
rng.random_long01Seq(result)
else: # Fields
rng.random_long01Seq(result, T.C)
func random_long01Seq_with_randZ*(rng: var RngState, T: typedesc[ECP_SWei_Proj]): T =
## Create a random curve element with a random Z coordinate
## Skewed towards long bitstrings of 0 or 1
rng.random_long01Seq_with_randZ(result)
# Sanity checks
# ------------------------------------------------------------
when isMainModule:
import std/[tables, times, strutils]
var rng: RngState
let timeSeed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(timeSeed)
echo "prng_sanity_checks xoshiro512** seed: ", timeSeed
proc test[T](s: Slice[T]) =
var c = initCountTable[int]()
for _ in 0 ..< 1_000_000:
c.inc(rng.random_unsafe(s))
echo "1'000'000 pseudo-random outputs from ", s.a, " to ", s.b, " (incl): ", c
test(0..1)
test(0..2)
test(1..52)
test(-10..10)
echo "\n-----------------------------\n"
echo "High Hamming Weight check"
for _ in 0 ..< 10:
let word = rng.random_word_highHammingWeight()
echo "0b", cast[BiggestInt](word).toBin(WordBitWidth), " - 0x", word.toHex()
echo "\n-----------------------------\n"
echo "Long strings of 0 or 1 check"
for _ in 0 ..< 10:
var a: BigInt[127]
rng.random_long01seq(a)
stdout.write "0b"
for word in a.limbs:
stdout.write cast[BiggestInt](word).toBin(WordBitWidth)
stdout.write " - 0x"
for word in a.limbs:
stdout.write word.BaseType.toHex()
stdout.write '\n'