constantine/benchmarks/bench_ec_g1.nim

72 lines
2.3 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Internals
../constantine/config/curves,
../constantine/arithmetic,
../constantine/elliptic/ec_weierstrass_projective,
# Helpers
../helpers/static_for,
./bench_elliptic_template,
# Standard library
std/strutils
# ############################################################
#
# Benchmark of the G1 group of
# Short Weierstrass elliptic curves
# in (homogeneous) projective coordinates
#
# ############################################################
const Iters = 1_000_000
const MulIters = 1000
const AvailableCurves = [
# P224,
# BN254_Nogami,
BN254_Snarks,
# Curve25519,
# P256,
# Secp256k1,
# BLS12_377,
BLS12_381,
# BN446,
# FKM12_447,
# BLS12_461,
# BN462
]
proc main() =
separator()
staticFor i, 0, AvailableCurves.len:
const curve = AvailableCurves[i]
addBench(ECP_SWei_Proj[Fp[curve]], Iters)
separator()
doublingBench(ECP_SWei_Proj[Fp[curve]], Iters)
separator()
scalarMulUnsafeDoubleAddBench(ECP_SWei_Proj[Fp[curve]], MulIters)
separator()
scalarMulGenericBench(ECP_SWei_Proj[Fp[curve]], scratchSpaceSize = 1 shl 2, MulIters)
separator()
scalarMulGenericBench(ECP_SWei_Proj[Fp[curve]], scratchSpaceSize = 1 shl 3, MulIters)
separator()
scalarMulGenericBench(ECP_SWei_Proj[Fp[curve]], scratchSpaceSize = 1 shl 4, MulIters)
separator()
scalarMulEndo(ECP_SWei_Proj[Fp[curve]], MulIters)
separator()
separator()
main()
echo "\nNotes:"
echo " - GCC is significantly slower than Clang on multiprecision arithmetic."
echo " - The simplest operations might be optimized away by the compiler."
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"