constantine/tests/test_finite_fields_sqrt.nim

123 lines
3.6 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import ../constantine/[arithmetic, primitives],
../constantine/io/[io_fields],
../constantine/config/[curves, common],
# Test utilities
../helpers/prng_unsafe,
# Standard library
std/tables,
std/unittest, std/times
const Iters = 128
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "test_finite_fields_sqrt xoshiro512** seed: ", seed
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
proc exhaustiveCheck_p3mod4(C: static Curve, modulus: static int) =
test "Exhaustive square root check for p ≡ 3 (mod 4) on " & $Curve(C):
var squares_to_roots: Table[uint16, set[uint16]]
# Create all squares
# -------------------------
for i in 0'u16 ..< modulus:
var a{.noInit.}: Fp[C]
a.fromUint(i)
a.square()
var r_bytes: array[8, byte]
r_bytes.exportRawUint(a, cpuEndian)
let r = uint16(cast[uint64](r_bytes))
squares_to_roots.mgetOrPut(r, default(set[uint16])).incl(i)
# From Euler's criterion
# there is exactly (p-1)/2 squares in 𝔽p* (without 0)
# and so (p-1)/2 + 1 in 𝔽p (with 0)
check: squares_to_roots.len == (modulus-1) div 2 + 1
# Check squares
# -------------------------
for i in 0'u16 ..< modulus:
var a{.noInit.}: Fp[C]
a.fromUint(i)
if i in squares_to_roots:
var a2 = a
check:
bool a.isSquare()
bool a.sqrt_if_square_p3mod4()
# 2 different code paths have the same result
# (despite 2 square roots existing per square)
a2.sqrt_p3mod4()
check: bool(a == a2)
var r_bytes: array[8, byte]
r_bytes.exportRawUint(a, cpuEndian)
let r = uint16(cast[uint64](r_bytes))
# r is one of the 2 square roots of `i`
check: r in squares_to_roots[i]
else:
let a2 = a
check:
bool not a.isSquare()
bool not a.sqrt_if_square_p3mod4()
bool (a == a2) # a shouldn't be modified
proc randomSqrtCheck_p3mod4(C: static Curve) =
test "Random square root check for p ≡ 3 (mod 4) on " & $Curve(C):
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp[C])
var na{.noInit.}: Fp[C]
na.neg(a)
var a2 = a
var na2 = na
a2.square()
na2.square()
check:
bool a2 == na2
bool a2.isSquare()
var r, s = a2
r.sqrt_p3mod4()
let ok = s.sqrt_if_square_p3mod4()
check:
bool ok
bool(r == s)
bool(r == a or r == na)
proc main() =
suite "Modular square root":
exhaustiveCheck_p3mod4 Fake103, 103
exhaustiveCheck_p3mod4 Fake10007, 10007
exhaustiveCheck_p3mod4 Fake65519, 65519
randomSqrtCheck_p3mod4 Mersenne61
randomSqrtCheck_p3mod4 Mersenne127
randomSqrtCheck_p3mod4 BN254_Nogami
randomSqrtCheck_p3mod4 BN254_Snarks
randomSqrtCheck_p3mod4 P256
randomSqrtCheck_p3mod4 Secp256k1
randomSqrtCheck_p3mod4 BLS12_381
randomSqrtCheck_p3mod4 BN446
randomSqrtCheck_p3mod4 FKM12_447
randomSqrtCheck_p3mod4 BLS12_461
randomSqrtCheck_p3mod4 BN462
main()