constantine/benchmarks/bench_pairing_template.nim

258 lines
8.5 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Benchmark of pairings
#
# ############################################################
import
# Internals
../constantine/config/[curves, common],
../constantine/arithmetic,
../constantine/io/io_bigints,
../constantine/towers,
../constantine/elliptic/[ec_shortweierstrass_projective, ec_shortweierstrass_affine],
../constantine/hash_to_curve/cofactors,
../constantine/pairing/[
cyclotomic_fp12,
lines_projective,
mul_fp12_by_lines,
pairing_bls12,
pairing_bn
],
# Helpers
../helpers/[prng_unsafe, static_for],
./platforms,
# Standard library
std/[monotimes, times, strformat, strutils, macros]
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "bench xoshiro512** seed: ", seed
# warmup
proc warmup*() =
# Warmup - make sure cpu is on max perf
let start = cpuTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = cpuTime()
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
warmup()
when defined(gcc):
echo "\nCompiled with GCC"
elif defined(clang):
echo "\nCompiled with Clang"
elif defined(vcc):
echo "\nCompiled with MSVC"
elif defined(icc):
echo "\nCompiled with ICC"
else:
echo "\nCompiled with an unknown compiler"
echo "Optimization level => "
echo " no optimization: ", not defined(release)
echo " release: ", defined(release)
echo " danger: ", defined(danger)
echo " inline assembly: ", UseASM_X86_64
when (sizeof(int) == 4) or defined(Constantine32):
echo "⚠️ Warning: using Constantine with 32-bit limbs"
else:
echo "Using Constantine with 64-bit limbs"
when SupportsCPUName:
echo "Running on ", cpuName(), ""
when SupportsGetTicks:
echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them."
echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)"
echo "\n=================================================================================================================\n"
proc separator*() =
echo "-".repeat(177)
proc report(op, curve: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stop-start) div iters)
let throughput = 1e9 / float64(ns)
when SupportsGetTicks:
echo &"{op:<60} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
else:
echo &"{op:<60} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op"
proc notes*() =
echo "Notes:"
echo " - Compilers:"
echo " Compilers are severely limited on multiprecision arithmetic."
echo " Constantine compile-time assembler is used by default (nimble bench_fp)."
echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries."
echo " GCC also seems to have issues with large temporaries and register spilling."
echo " This is somewhat alleviated by Constantine compile-time assembler."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc\" or \"nimble bench_ec_g1_clang\"."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc_noasm\" or \"nimble bench_ec_g1_clang_noasm\"."
echo " - The simplest operations might be optimized away by the compiler."
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"
template bench(op: string, C: static Curve, iters: int, body: untyped): untyped =
let start = getMonotime()
when SupportsGetTicks:
let startClk = getTicks()
for _ in 0 ..< iters:
body
when SupportsGetTicks:
let stopClk = getTicks()
let stop = getMonotime()
when not SupportsGetTicks:
let startClk = -1'i64
let stopClk = -1'i64
report(op, $C, start, stop, startClk, stopClk, iters)
func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} =
result = rng.random_unsafe(EC)
result.clearCofactorReference()
proc lineDoubleBench*(C: static Curve, iters: int) =
var line: Line[Fp2[C], C.getSexticTwist()]
var T = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
let P = rng.random_point(ECP_ShortW_Proj[Fp[C]])
var Paff: ECP_ShortW_Aff[Fp[C]]
Paff.affineFromProjective(P)
bench("Line double", C, iters):
line.line_double(T, Paff)
proc lineAddBench*(C: static Curve, iters: int) =
var line: Line[Fp2[C], C.getSexticTwist()]
var T = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
let
P = rng.random_point(ECP_ShortW_Proj[Fp[C]])
Q = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
var
Paff: ECP_ShortW_Aff[Fp[C]]
Qaff: ECP_ShortW_Aff[Fp2[C]]
Paff.affineFromProjective(P)
Qaff.affineFromProjective(Q)
bench("Line add", C, iters):
line.line_add(T, Qaff, Paff)
proc mulFp12byLine_xyz000_Bench*(C: static Curve, iters: int) =
var line: Line[Fp2[C], C.getSexticTwist()]
var T = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
let P = rng.random_point(ECP_ShortW_Proj[Fp[C]])
var Paff: ECP_ShortW_Aff[Fp[C]]
Paff.affineFromProjective(P)
line.line_double(T, Paff)
var f = rng.random_unsafe(Fp12[C])
bench("Mul 𝔽p12 by line xyz000", C, iters):
f.mul_sparse_by_line_xyz000(line)
proc mulFp12byLine_xy000z_Bench*(C: static Curve, iters: int) =
var line: Line[Fp2[C], C.getSexticTwist()]
var T = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
let P = rng.random_point(ECP_ShortW_Proj[Fp[C]])
var Paff: ECP_ShortW_Aff[Fp[C]]
Paff.affineFromProjective(P)
line.line_double(T, Paff)
var f = rng.random_unsafe(Fp12[C])
bench("Mul 𝔽p12 by line xy000z", C, iters):
f.mul_sparse_by_line_xy000z(line)
proc millerLoopBLS12Bench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Proj[Fp[C]])
Q = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
var
Paff: ECP_ShortW_Aff[Fp[C]]
Qaff: ECP_ShortW_Aff[Fp2[C]]
Paff.affineFromProjective(P)
Qaff.affineFromProjective(Q)
var f: Fp12[C]
bench("Miller Loop BLS12", C, iters):
f.millerLoopGenericBLS12(Paff, Qaff)
proc millerLoopBNBench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Proj[Fp[C]])
Q = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
var
Paff: ECP_ShortW_Aff[Fp[C]]
Qaff: ECP_ShortW_Aff[Fp2[C]]
Paff.affineFromProjective(P)
Qaff.affineFromProjective(Q)
var f: Fp12[C]
bench("Miller Loop BN", C, iters):
f.millerLoopGenericBN(Paff, Qaff)
proc finalExpEasyBench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
bench("Final Exponentiation Easy", C, iters):
r.finalExpEasy()
proc finalExpHardBLS12Bench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
r.finalExpEasy()
bench("Final Exponentiation Hard BLS12", C, iters):
r.finalExpHard_BLS12()
proc finalExpHardBNBench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
r.finalExpEasy()
bench("Final Exponentiation Hard BN", C, iters):
r.finalExpHard_BN()
proc finalExpBLS12Bench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
bench("Final Exponentiation BLS12", C, iters):
r.finalExpEasy()
r.finalExpHard_BLS12()
proc finalExpBNBench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
bench("Final Exponentiation BN", C, iters):
r.finalExpEasy()
r.finalExpHard_BN()
proc pairingBLS12Bench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Proj[Fp[C]])
Q = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
var f: Fp12[C]
bench("Pairing BLS12", C, iters):
f.pairing_bls12(P, Q)
proc pairingBNBench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Proj[Fp[C]])
Q = rng.random_point(ECP_ShortW_Proj[Fp2[C]])
var f: Fp12[C]
bench("Pairing BN", C, iters):
f.pairing_bn(P, Q)