constantine/sage/derive_pairing.sage

256 lines
8.3 KiB
Python
Raw Normal View History

#!/usr/bin/sage
# vim: syntax=python
# vim: set ts=2 sw=2 et:
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Pairing constants
#
# ############################################################
# Imports
# ---------------------------------------------------------
import os
import inspect, textwrap
# Working directory
# ---------------------------------------------------------
os.chdir(os.path.dirname(__file__))
# Sage imports
# ---------------------------------------------------------
# Accelerate arithmetic by accepting probabilistic proofs
from sage.structure.proof.all import arithmetic
arithmetic(False)
load('curves.sage')
# Utilities
# ---------------------------------------------------------
# Code generators
# ---------------------------------------------------------
def genAteParam(curve_name, curve_config):
u = curve_config[curve_name]['field']['param']
family = curve_config[curve_name]['field']['family']
if family == 'BLS12':
ate_param = u
ate_comment = ' # BLS12 Miller loop is parametrized by u\n'
elif family == 'BN':
ate_param = 6*u+2
ate_comment = ' # BN Miller loop is parametrized by 6u+2\n'
elif family == 'BW6':
result = genAteParam_BW6_unoptimized(curve_name, curve_config)
result += '\n\n'
result += genAteParam_BW6_opt(curve_name, curve_config)
return result
else:
raise ValueError(f'family: {family} is not implemented')
buf = '# The bit count must be exact for the Miller loop\n'
buf += f'const {curve_name}_pairing_ate_param* = block:\n'
buf += ate_comment
ate_bits = int(ate_param).bit_length()
buf += f' BigInt[{ate_bits}].fromHex"0x{Integer(abs(ate_param)).hex()}"\n\n'
buf += f'const {curve_name}_pairing_ate_param_isNeg* = {"true" if ate_param < 0 else "false"}'
return buf
def genAteParam_BW6_unoptimized(curve_name, curve_config):
u = curve_config[curve_name]['field']['param']
family = curve_config[curve_name]['field']['family']
assert family == 'BW6'
# Algorithm 5 - https://eprint.iacr.org/2020/351.pdf
ate_param = u+1
ate_param_2 = u*(u^2 - u - 1)
ate_comment = ' # BW6-761 unoptimized Miller loop first part is parametrized by u+1\n'
ate_comment_2 = ' # BW6 unoptimized Miller loop second part is parametrized by u*(u²-u-1)\n'
# Note we can use the fact that
# f_{u+1,Q}(P) = f_{u,Q}(P) . l_{[u]Q,Q}(P)
# f_{u³-u²-u,Q}(P) = f_{u (u²-u-1),Q}(P)
# = (f_{u,Q}(P))^(u²-u-1) * f_{v,[u]Q}(P)
#
# to have a common computation f_{u,Q}(P)
# but this require a scalar mul [u]Q
# and then its inversion to plug it back in the second Miller loop
# f_{u+1,Q}(P)
# ---------------------------------------------------------
buf = '# 1st part: f_{u+1,Q}(P)\n'
buf += f'const {curve_name}_pairing_ate_param_1_unopt* = block:\n'
buf += ate_comment
ate_bits = int(ate_param).bit_length()
naf_bits = int(3*ate_param).bit_length() - ate_bits
buf += f' # +{naf_bits} to bitlength so that we can mul by 3 for NAF encoding\n'
buf += f' BigInt[{ate_bits}+{naf_bits}].fromHex"0x{Integer(abs(ate_param)).hex()}"\n\n'
buf += f'const {curve_name}_pairing_ate_param_1_unopt_isNeg* = {"true" if ate_param < 0 else "false"}'
# frobenius(f_{u*(u²-u-1),Q}(P))
# ---------------------------------------------------------
buf += '\n\n\n'
buf += '# 2nd part: f_{u*(u²-u-1),Q}(P) followed by Frobenius application\n'
buf += f'const {curve_name}_pairing_ate_param_2_unopt* = block:\n'
buf += ate_comment_2
ate_2_bits = int(ate_param_2).bit_length()
naf_2_bits = int(3*ate_param_2).bit_length() - ate_2_bits
buf += f' # +{naf_2_bits} to bitlength so that we can mul by 3 for NAF encoding\n'
buf += f' BigInt[{ate_2_bits}+{naf_2_bits}].fromHex"0x{Integer(abs(ate_param_2)).hex()}"\n\n'
buf += f'const {curve_name}_pairing_ate_param_2_unopt_isNeg* = {"true" if ate_param_2 < 0 else "false"}'
buf += '\n'
return buf
def genAteParam_BW6_opt(curve_name, curve_config):
u = curve_config[curve_name]['field']['param']
family = curve_config[curve_name]['field']['family']
assert family == 'BW6'
# Algorithm 5 - https://eprint.iacr.org/2020/351.pdf
ate_param = u
ate_param_2 = u^2 - u - 1
ate_comment = ' # BW6 Miller loop first part is parametrized by u\n'
ate_comment_2 = ' # BW6 Miller loop second part is parametrized by u²-u-1\n'
# Note we can use the fact that
# f_{u+1,Q}(P) = f_{u,Q}(P) . l_{[u]Q,Q}(P)
# f_{u³-u²-u,Q}(P) = f_{u (u²-u-1),Q}(P)
# = (f_{u,Q}(P))^(u²-u-1) * f_{v,[u]Q}(P)
#
# to have a common computation f_{u,Q}(P)
# but this require a scalar mul [u]Q
# and then its inversion to plug it back in the second Miller loop
# f_{u,Q}(P)
# ---------------------------------------------------------
buf = '# 1st part: f_{u,Q}(P)\n'
buf += f'const {curve_name}_pairing_ate_param_1_opt* = block:\n'
buf += ate_comment
ate_bits = int(ate_param).bit_length()
naf_bits = 0 # int(3*ate_param).bit_length() - ate_bits
buf += f' # no NAF for the optimized first Miller loop\n'
buf += f' BigInt[{ate_bits}].fromHex"0x{Integer(abs(ate_param)).hex()}"\n\n'
buf += f'const {curve_name}_pairing_ate_param_1_opt_isNeg* = {"true" if ate_param < 0 else "false"}'
# frobenius(f_{u²-u-1,Q}(P))
# ---------------------------------------------------------
buf += '\n\n\n'
buf += '# 2nd part: f_{u²-u-1,Q}(P) followed by Frobenius application\n'
buf += f'const {curve_name}_pairing_ate_param_2_opt* = block:\n'
buf += ate_comment_2
ate_2_bits = int(ate_param_2).bit_length()
naf_2_bits = int(3*ate_param_2).bit_length() - ate_2_bits
buf += f' # +{naf_2_bits} to bitlength so that we can mul by 3 for NAF encoding\n'
buf += f' BigInt[{ate_2_bits}+{naf_2_bits}].fromHex"0x{Integer(abs(ate_param_2)).hex()}"\n\n'
buf += f'const {curve_name}_pairing_ate_param_2_opt_isNeg* = {"true" if ate_param_2 < 0 else "false"}'
buf += '\n'
return buf
def genFinalExp(curve_name, curve_config):
p = curve_config[curve_name]['field']['modulus']
r = curve_config[curve_name]['field']['order']
k = curve_config[curve_name]['tower']['embedding_degree']
family = curve_config[curve_name]['field']['family']
# For BLS12 and BW6, 3*hard part has a better expression
# in the q basis with LLL algorithm
scale = 1
scaleDesc = ''
if family == 'BLS12':
scale = 3
scaleDesc = ' * 3'
if family == 'BW6':
u = curve_config[curve_name]['field']['param']
scale = 3*(u^3-u^2+1)
scaleDesc = ' * 3*(u^3-u^2+1)'
fexp = (p^k - 1)//r
fexp *= scale
buf = f'const {curve_name}_pairing_finalexponent* = block:\n'
buf += f' # (p^{k} - 1) / r' + scaleDesc
buf += '\n'
buf += f' BigInt[{int(fexp).bit_length()}].fromHex"0x{Integer(fexp).hex()}"'
return buf
# CLI
# ---------------------------------------------------------
if __name__ == "__main__":
# Usage
# BLS12-381
# sage sage/derive_pairing.sage BLS12_381
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("curve",nargs="+")
args = parser.parse_args()
curve = args.curve[0]
if curve not in Curves:
raise ValueError(
curve +
' is not one of the available curves: ' +
str(Curves.keys())
)
else:
ate = genAteParam(curve, Curves)
fexp = genFinalExp(curve, Curves)
with open(f'{curve.lower()}_pairing.nim', 'w') as f:
f.write(copyright())
f.write('\n\n')
f.write(inspect.cleandoc("""
import
../config/curves,
../io/io_bigints
# Slow generic implementation
# ------------------------------------------------------------
"""))
f.write('\n\n')
f.write(ate)
f.write('\n\n')
f.write(fexp)
f.write('\n\n')
f.write(inspect.cleandoc("""
# Addition chain
# ------------------------------------------------------------
"""))
print(f'Successfully created {curve}_pairing.nim')