mirror of
https://github.com/status-im/c-kzg-4844.git
synced 2025-01-20 06:59:00 +00:00
180 lines
6.4 KiB
C
180 lines
6.4 KiB
C
/*
|
|
* Copyright 2021 Benjamin Edgington
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file recover.c
|
|
*
|
|
* Recover polynomials from samples.
|
|
*/
|
|
|
|
#include "recover.h"
|
|
#include "c_kzg_util.h"
|
|
#include "fft_fr.h"
|
|
#include "utility.h"
|
|
#include "zero_poly.h"
|
|
|
|
/** 5 is a primitive element, but actually this can be pretty much anything not 0 or a low-degree root of unity */
|
|
#define SCALE_FACTOR 5
|
|
|
|
/**
|
|
* Scale a polynomial in place.
|
|
*
|
|
* Multiplies each coefficient by `1 / scale_factor ^ i`. Equivalent to creating a polynomial that evaluates at `x * k`
|
|
* rather than `x`.
|
|
*
|
|
* @param[out,in] p The polynomial coefficients to be scaled
|
|
* @param[in] len_p Length of the polynomial coefficients
|
|
*/
|
|
void scale_poly(fr_t *p, uint64_t len_p) {
|
|
fr_t scale_factor, factor_power, inv_factor;
|
|
fr_from_uint64(&scale_factor, SCALE_FACTOR);
|
|
fr_inv(&inv_factor, &scale_factor);
|
|
factor_power = fr_one;
|
|
|
|
for (uint64_t i = 1; i < len_p; i++) {
|
|
fr_mul(&factor_power, &factor_power, &inv_factor);
|
|
fr_mul(&p[i], &p[i], &factor_power);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Unscale a polynomial in place.
|
|
*
|
|
* Multiplies each coefficient by `scale_factor ^ i`. Equivalent to creating a polynomial that evaluates at `x / k`
|
|
* rather than `x`.
|
|
*
|
|
* @param[out,in] p The polynomial coefficients to be unscaled
|
|
* @param[in] len_p Length of the polynomial coefficients
|
|
*/
|
|
void unscale_poly(fr_t *p, uint64_t len_p) {
|
|
fr_t scale_factor, factor_power;
|
|
fr_from_uint64(&scale_factor, SCALE_FACTOR);
|
|
factor_power = fr_one;
|
|
|
|
for (uint64_t i = 1; i < len_p; i++) {
|
|
fr_mul(&factor_power, &factor_power, &scale_factor);
|
|
fr_mul(&p[i], &p[i], &factor_power);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given a dataset with up to half the entries missing, return the reconstructed original.
|
|
*
|
|
* Assumes that the inverse FFT of the original data has the upper half of its values equal to zero.
|
|
*
|
|
* See https://ethresear.ch/t/reed-solomon-erasure-code-recovery-in-n-log-2-n-time-with-ffts/3039
|
|
*
|
|
* @param[out] reconstructed_data An attempted reconstruction of the original data
|
|
* @param[in] samples The data to be reconstructed, with `fr_null` set for missing values
|
|
* @param[in] len_samples The length of @p samples and @p reconstructed_data
|
|
* @param[in] fs The FFT settings previously initialised with #new_fft_settings
|
|
* @retval C_CZK_OK All is well
|
|
* @retval C_CZK_BADARGS Invalid parameters were supplied
|
|
* @retval C_CZK_ERROR An internal error occurred
|
|
* @retval C_CZK_MALLOC Memory allocation failed
|
|
*/
|
|
C_KZG_RET recover_poly_from_samples(fr_t *reconstructed_data, fr_t *samples, uint64_t len_samples, FFTSettings *fs) {
|
|
|
|
CHECK(is_power_of_two(len_samples));
|
|
|
|
uint64_t *missing;
|
|
TRY(new_uint64_array(&missing, len_samples));
|
|
|
|
uint64_t len_missing = 0;
|
|
for (uint64_t i = 0; i < len_samples; i++) {
|
|
if (fr_is_null(&samples[i])) {
|
|
missing[len_missing++] = i;
|
|
}
|
|
}
|
|
|
|
// Make scratch areas, each of size len_samples. Cuts space required by 57%.
|
|
fr_t *scratch;
|
|
TRY(new_fr_array(&scratch, 3 * len_samples));
|
|
fr_t *scratch0 = scratch;
|
|
fr_t *scratch1 = scratch0 + len_samples;
|
|
fr_t *scratch2 = scratch1 + len_samples;
|
|
|
|
// Assign meaningful names to scratch spaces
|
|
fr_t *zero_eval = scratch0;
|
|
fr_t *poly_evaluations_with_zero = scratch2;
|
|
fr_t *poly_with_zero = scratch0;
|
|
fr_t *eval_scaled_poly_with_zero = scratch2;
|
|
fr_t *eval_scaled_zero_poly = scratch0;
|
|
fr_t *scaled_reconstructed_poly = scratch1;
|
|
|
|
poly zero_poly;
|
|
zero_poly.length = len_samples;
|
|
zero_poly.coeffs = scratch1;
|
|
|
|
// Calculate `Z_r,I`
|
|
TRY(zero_polynomial_via_multiplication(zero_eval, &zero_poly, len_samples, missing, len_missing, fs));
|
|
|
|
// Check all is well
|
|
for (uint64_t i = 0; i < len_samples; i++) {
|
|
TRY(fr_is_null(&samples[i]) == fr_is_zero(&zero_eval[i]) ? C_KZG_OK : C_KZG_ERROR);
|
|
}
|
|
|
|
// Construct E * Z_r,I: the loop makes the evaluation polynomial
|
|
for (uint64_t i = 0; i < len_samples; i++) {
|
|
if (fr_is_null(&samples[i])) {
|
|
poly_evaluations_with_zero[i] = fr_zero;
|
|
} else {
|
|
fr_mul(&poly_evaluations_with_zero[i], &samples[i], &zero_eval[i]);
|
|
}
|
|
}
|
|
// Now inverse FFT so that poly_with_zero is (E * Z_r,I)(x) = (D * Z_r,I)(x)
|
|
TRY(fft_fr(poly_with_zero, poly_evaluations_with_zero, true, len_samples, fs));
|
|
|
|
// x -> k * x
|
|
scale_poly(poly_with_zero, len_samples);
|
|
scale_poly(zero_poly.coeffs, zero_poly.length);
|
|
|
|
// Q1 = (D * Z_r,I)(k * x)
|
|
fr_t *scaled_poly_with_zero = poly_with_zero; // Renaming
|
|
// Q2 = Z_r,I(k * x)
|
|
fr_t *scaled_zero_poly = zero_poly.coeffs; // Renaming
|
|
|
|
// Polynomial division by convolution: Q3 = Q1 / Q2
|
|
TRY(fft_fr(eval_scaled_poly_with_zero, scaled_poly_with_zero, false, len_samples, fs));
|
|
TRY(fft_fr(eval_scaled_zero_poly, scaled_zero_poly, false, len_samples, fs));
|
|
|
|
fr_t *eval_scaled_reconstructed_poly = eval_scaled_poly_with_zero;
|
|
for (uint64_t i = 0; i < len_samples; i++) {
|
|
fr_div(&eval_scaled_reconstructed_poly[i], &eval_scaled_poly_with_zero[i], &eval_scaled_zero_poly[i]);
|
|
}
|
|
|
|
// The result of the division is D(k * x):
|
|
TRY(fft_fr(scaled_reconstructed_poly, eval_scaled_reconstructed_poly, true, len_samples, fs));
|
|
|
|
// k * x -> x
|
|
unscale_poly(scaled_reconstructed_poly, len_samples);
|
|
|
|
// Finally we have D(x) which evaluates to our original data at the powers of roots of unity
|
|
fr_t *reconstructed_poly = scaled_reconstructed_poly; // Renaming
|
|
|
|
// The evaluation polynomial for D(x) is the reconstructed data:
|
|
TRY(fft_fr(reconstructed_data, reconstructed_poly, false, len_samples, fs));
|
|
|
|
// Check all is well
|
|
for (uint64_t i = 0; i < len_samples; i++) {
|
|
TRY(fr_is_null(&samples[i]) || fr_equal(&reconstructed_data[i], &samples[i]) ? C_KZG_OK : C_KZG_ERROR);
|
|
}
|
|
|
|
free(scratch);
|
|
free(missing);
|
|
|
|
return C_KZG_OK;
|
|
} |