/* * Copyright 2021 Benjamin Edgington * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // FK20 refers to this technique: https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf #include // free() #include // memcpy() #include "fk20_proofs.h" #include "fft_g1.h" #include "c_kzg_util.h" // Log base 2 - only works for n a power of two int log2_pow2(uint32_t n) { const uint32_t b[] = {0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000}; register uint32_t r; r = (n & b[0]) != 0; r |= ((n & b[1]) != 0) << 1; r |= ((n & b[2]) != 0) << 2; r |= ((n & b[3]) != 0) << 3; r |= ((n & b[4]) != 0) << 4; return r; } // This simply wraps the macro to enforce the type check uint32_t reverse_bits(uint32_t a) { return rev_4byte(a); } uint32_t reverse_bits_limited(uint32_t length, uint32_t value) { int unused_bit_len = 32 - log2_pow2(length); return reverse_bits(value) >> unused_bit_len; } // In-place re-ordering of an array by the bit-reversal of the indices // Can handle arrays of any type: provide the element size in `size` C_KZG_RET reverse_bit_order(void *values, size_t size, uint64_t n) { ASSERT(n >> 32 == 0, C_KZG_BADARGS); ASSERT(is_power_of_two(n), C_KZG_BADARGS); byte tmp[size]; int unused_bit_len = 32 - log2_pow2(n); for (uint32_t i = 0; i < n; i++) { uint32_t r = reverse_bits(i) >> unused_bit_len; if (r > i) { // Swap the two elements memcpy(tmp, values + (i * size), size); memcpy(values + (i * size), values + (r * size), size); memcpy(values + (r * size), tmp, size); } } return C_KZG_OK; } // Performs the first part of the Toeplitz matrix multiplication algorithm, which is a Fourier // transform of the vector x extended C_KZG_RET toeplitz_part_1(blst_p1 *out, const blst_p1 *x, uint64_t n, KZGSettings *ks) { uint64_t n2 = n * 2; blst_p1 identity_g1, *x_ext; ASSERT(c_kzg_malloc((void **)&x_ext, n2 * sizeof *x_ext) == C_KZG_OK, C_KZG_MALLOC); blst_p1_from_affine(&identity_g1, &identity_g1_affine); for (uint64_t i = 0; i < n; i++) { x_ext[i] = x[i]; } for (uint64_t i = n; i < n2; i++) { x_ext[i] = identity_g1; } ASSERT(fft_g1(out, x_ext, false, n2, ks->fs) == C_KZG_OK, C_KZG_ERROR); free(x_ext); return C_KZG_OK; } // Performs the second part of the Toeplitz matrix multiplication algorithm C_KZG_RET toeplitz_part_2(blst_p1 *out, const poly *toeplitz_coeffs, const FK20SingleSettings *fk) { blst_fr *toeplitz_coeffs_fft; ASSERT(toeplitz_coeffs->length == fk->x_ext_fft_len, C_KZG_BADARGS); ASSERT(c_kzg_malloc((void **)&toeplitz_coeffs_fft, toeplitz_coeffs->length * sizeof *toeplitz_coeffs_fft) == C_KZG_OK, C_KZG_MALLOC); ASSERT(fft_fr(toeplitz_coeffs_fft, toeplitz_coeffs->coeffs, false, toeplitz_coeffs->length, fk->ks->fs) == C_KZG_OK, C_KZG_ERROR); for (uint64_t i = 0; i < toeplitz_coeffs->length; i++) { p1_mul(&out[i], &fk->x_ext_fft[i], &toeplitz_coeffs_fft[i]); } free(toeplitz_coeffs_fft); return C_KZG_OK; } // Part 3: transform back and zero the top half C_KZG_RET toeplitz_part_3(blst_p1 *out, const blst_p1 *h_ext_fft, uint64_t n2, const FK20SingleSettings *fk) { uint64_t n = n2 / 2; blst_p1 identity_g1; ASSERT(fft_g1(out, h_ext_fft, true, n2, fk->ks->fs) == C_KZG_OK, C_KZG_ERROR); // Zero the second half of h blst_p1_from_affine(&identity_g1, &identity_g1_affine); for (uint64_t i = n; i < n2; i++) { out[i] = identity_g1; } return C_KZG_OK; } void toeplitz_coeffs_step(poly *out, const poly *in) { uint64_t n = in->length, n2 = n * 2; out->coeffs[0] = in->coeffs[n - 1]; for (uint64_t i = 1; i <= n + 1; i++) { out->coeffs[i] = fr_zero; } for (uint64_t i = n + 2; i < n2; i++) { out->coeffs[i] = in->coeffs[i - (n + 1)]; } } // Special version of the FK20 for the situation of data availability checks: // The upper half of the polynomial coefficients is always 0, so we do not need to extend to twice the size // for Toeplitz matrix multiplication C_KZG_RET fk20_single_da_opt(blst_p1 *out, const poly *p, FK20SingleSettings *fk) { uint64_t n = p->length, n2 = n * 2; blst_p1 *h, *h_ext_fft; poly toeplitz_coeffs; C_KZG_RET ret; ASSERT(n2 <= fk->ks->fs->max_width, C_KZG_BADARGS); ASSERT(is_power_of_two(n), C_KZG_BADARGS); ASSERT(init_poly(&toeplitz_coeffs, n2) == C_KZG_OK, C_KZG_MALLOC); toeplitz_coeffs_step(&toeplitz_coeffs, p); ASSERT(c_kzg_malloc((void **)&h_ext_fft, toeplitz_coeffs.length * sizeof *h_ext_fft) == C_KZG_OK, C_KZG_MALLOC); ASSERT((ret = toeplitz_part_2(h_ext_fft, &toeplitz_coeffs, fk)) == C_KZG_OK, ret == C_KZG_MALLOC ? ret : C_KZG_ERROR); ASSERT(c_kzg_malloc((void **)&h, toeplitz_coeffs.length * sizeof *h) == C_KZG_OK, C_KZG_MALLOC); ASSERT(toeplitz_part_3(h, h_ext_fft, n2, fk) == C_KZG_OK, C_KZG_ERROR); ASSERT(fft_g1(out, h, false, n2, fk->ks->fs) == C_KZG_OK, C_KZG_ERROR); free(h); free(h_ext_fft); free_poly(&toeplitz_coeffs); return C_KZG_OK; } C_KZG_RET da_using_fk20_single(blst_p1 *out, const poly *p, FK20SingleSettings *fk) { uint64_t n = p->length, n2 = n * 2; ASSERT(n2 <= fk->ks->fs->max_width, C_KZG_BADARGS); ASSERT(is_power_of_two(n), C_KZG_BADARGS); ASSERT(fk20_single_da_opt(out, p, fk) == C_KZG_OK, C_KZG_ERROR); ASSERT(reverse_bit_order(out, sizeof out[0], n2) == C_KZG_OK, C_KZG_ERROR); return C_KZG_OK; } C_KZG_RET new_fk20_single_settings(FK20SingleSettings *fk, uint64_t n2, KZGSettings *ks) { int n = n2 / 2; blst_p1 *x; ASSERT(n2 <= ks->fs->max_width, C_KZG_BADARGS); ASSERT(is_power_of_two(n2), C_KZG_BADARGS); ASSERT(n2 >= 2, C_KZG_BADARGS); fk->ks = ks; fk->x_ext_fft_len = n2; ASSERT(c_kzg_malloc((void **)&x, n * sizeof *x) == C_KZG_OK, C_KZG_MALLOC); ASSERT(c_kzg_malloc((void **)&fk->x_ext_fft, fk->x_ext_fft_len * sizeof *fk->x_ext_fft) == C_KZG_OK, C_KZG_MALLOC); for (uint64_t i = 0; i < n - 1; i++) { x[i] = ks->secret_g1[n - 2 - i]; } blst_p1_from_affine(&x[n - 1], &identity_g1_affine); ASSERT(toeplitz_part_1(fk->x_ext_fft, x, n, ks) == C_KZG_OK, C_KZG_ERROR); free(x); return C_KZG_OK; } void free_fk20_single_settings(FK20SingleSettings *fk) { free(fk->x_ext_fft); }