Documentation updates (#208)

* Documentation update

* Documentation for division. Note that the doc says that the behaviour for a/0 is unspecified. Feel free to change.

* Add some Documentation. This fixes item #3 in https://hackmd.io/@6iQDuIePQjyYBqDChYw_jg/ByXAsi21h

* Moved documentation remark for doxygen @remark to in-code remark. The remark is not useful for API-documentation (it refers to a macro that is not part of the API).

* More verbose comment for bit_reversal_permutation.

* doxygen comment parameter name did not match variable name. Fix this.

* Remove parameter n from doxygen comment of compute_challenge, as there is no such argument.
This fixes #4 in https://hackmd.io/@6iQDuIePQjyYBqDChYw_jg/ByXAsi21h

* In compute_kzg_proof_impl, document the role of the m variable that is used to indicate whether the evaluation point is one of the interpolation points.

* Run  `make format`

* Improve multiline comments from `make format` in middle of the code

---------

Co-authored-by: George Kadianakis <desnacked@riseup.net>
This commit is contained in:
Gottfried Herold 2023-03-14 10:40:06 +01:00 committed by GitHub
parent 549739fcb3
commit b4eb8d003e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -250,6 +250,11 @@ static bool fr_equal(const fr_t *aa, const fr_t *bb) {
/** /**
* Divide a field element by another. * Divide a field element by another.
* *
* @remark The behaviour for @p b == 0 is unspecified.
*
* @remark This function does support in-place computation, i.e. @p out == @p a
* or @p out == @p b work.
*
* @param[out] out @p a divided by @p b in the field * @param[out] out @p a divided by @p b in the field
* @param[in] a The dividend * @param[in] a The dividend
* @param[in] b The divisor * @param[in] b The divisor
@ -267,6 +272,9 @@ static void fr_div(fr_t *out, const fr_t *a, const fr_t *b) {
* *
* @remark A 64-bit exponent is sufficient for our needs here. * @remark A 64-bit exponent is sufficient for our needs here.
* *
* @remark This function does support in-place computation, i.e. @p a == @p out
* works.
*
* @param[out] out @p a raised to the power of @p n * @param[out] out @p a raised to the power of @p n
* @param[in] a The field element to be exponentiated * @param[in] a The field element to be exponentiated
* @param[in] n The exponent * @param[in] n The exponent
@ -314,6 +322,7 @@ static C_KZG_RET fr_batch_inv(fr_t *out, const fr_t *a, size_t len) {
fr_t inv; fr_t inv;
size_t i; size_t i;
assert(len > 0);
assert(a != out); assert(a != out);
ret = new_fr_array(&prod, len); ret = new_fr_array(&prod, len);
@ -478,7 +487,9 @@ static void bytes_from_bls_field(Bytes32 *out, const fr_t *in) {
/** /**
* Serialize a 64-bit unsigned integer into bytes. * Serialize a 64-bit unsigned integer into bytes.
*
* @remark The output format is little-endian.
*
* @param[out] out An 8-byte array to store the serialized integer * @param[out] out An 8-byte array to store the serialized integer
* @param[in] n The integer to be serialized * @param[in] n The integer to be serialized
*/ */
@ -531,18 +542,23 @@ static bool is_power_of_two(uint64_t n) {
/** /**
* Reverse the bit order in a 32 bit integer. * Reverse the bit order in a 32 bit integer.
* *
* @remark This simply wraps the macro to enforce the type check.
*
* @param[in] a The integer to be reversed * @param[in] a The integer to be reversed
* @return An integer with the bits of @p a reversed * @return An integer with the bits of @p a reversed
*/ */
static uint32_t reverse_bits(uint32_t a) { static uint32_t reverse_bits(uint32_t a) {
// This simply wraps the macro above to enforce the type check.
return rev_4byte(a); return rev_4byte(a);
} }
/** /**
* Reorder an array in reverse bit order of its indices. * Reorder an array in reverse bit order of its indices.
* *
* @remark This means that input[n] == output[n'],
* where input and output denote the input and output array
* and n' is obtained from n by bit-reversing n.
* As opposed to reverse_bits, this bit-reversal operates on log2(@p
* n)-bit numbers.
*
* @remark Operates in-place on the array. * @remark Operates in-place on the array.
* @remark Can handle arrays of any type: provide the element size in @p size. * @remark Can handle arrays of any type: provide the element size in @p size.
* *
@ -584,7 +600,7 @@ static C_KZG_RET bit_reversal_permutation(
* Map bytes to a BLS field element. * Map bytes to a BLS field element.
* *
* @param[out] out The field element to store the result * @param[out] out The field element to store the result
* @param[in] bytes A 32-byte array containing the input * @param[in] b A 32-byte array containing the input
*/ */
static void hash_to_bls_field(fr_t *out, const Bytes32 *b) { static void hash_to_bls_field(fr_t *out, const Bytes32 *b) {
blst_scalar tmp; blst_scalar tmp;
@ -597,7 +613,7 @@ static void hash_to_bls_field(fr_t *out, const Bytes32 *b) {
* element. * element.
* *
* @param[out] out The field element to store the deserialized data * @param[out] out The field element to store the deserialized data
* @param[in] bytes A 32-byte array containing the serialized field element * @param[in] b A 32-byte array containing the serialized field element
*/ */
static C_KZG_RET bytes_to_bls_field(fr_t *out, const Bytes32 *b) { static C_KZG_RET bytes_to_bls_field(fr_t *out, const Bytes32 *b) {
blst_scalar tmp; blst_scalar tmp;
@ -682,7 +698,6 @@ static const int CHALLENGE_INPUT_SIZE = 32 + BYTES_PER_BLOB + 48;
* @param[out] eval_challenge_out The evaluation challenge * @param[out] eval_challenge_out The evaluation challenge
* @param[in] blob A blob * @param[in] blob A blob
* @param[in] commitment A commitment * @param[in] commitment A commitment
* @param[in] n The number of polynomials and commitments
*/ */
static void compute_challenge( static void compute_challenge(
fr_t *eval_challenge_out, const Blob *blob, const g1_t *commitment fr_t *eval_challenge_out, const Blob *blob, const g1_t *commitment
@ -854,6 +869,10 @@ static C_KZG_RET evaluate_polynomial_in_evaluation_form(
if (ret != C_KZG_OK) goto out; if (ret != C_KZG_OK) goto out;
for (i = 0; i < FIELD_ELEMENTS_PER_BLOB; i++) { for (i = 0; i < FIELD_ELEMENTS_PER_BLOB; i++) {
// if the point to evaluate at is one of the evaluation points by which
// the polynomial is given, we can just return the result directly. Note
// that special-casing this is neccessary, as the formula below would
// divide by zero otherwise.
if (fr_equal(x, &roots_of_unity[i])) { if (fr_equal(x, &roots_of_unity[i])) {
*out = p->evals[i]; *out = p->evals[i];
ret = C_KZG_OK; ret = C_KZG_OK;
@ -1086,7 +1105,9 @@ static C_KZG_RET compute_kzg_proof_impl(
fr_t tmp; fr_t tmp;
Polynomial q; Polynomial q;
const fr_t *roots_of_unity = s->fs->roots_of_unity; const fr_t *roots_of_unity = s->fs->roots_of_unity;
uint64_t i, m = 0; uint64_t i;
/* m != 0 indicates that the evaluation point z equals root_of_unity[m-1] */
uint64_t m = 0;
ret = new_fr_array(&inverses_in, FIELD_ELEMENTS_PER_BLOB); ret = new_fr_array(&inverses_in, FIELD_ELEMENTS_PER_BLOB);
if (ret != C_KZG_OK) goto out; if (ret != C_KZG_OK) goto out;
@ -1112,7 +1133,7 @@ static C_KZG_RET compute_kzg_proof_impl(
blst_fr_mul(&q.evals[i], &q.evals[i], &inverses[i]); blst_fr_mul(&q.evals[i], &q.evals[i], &inverses[i]);
} }
if (m) { // ω_m == z if (m != 0) { // ω_{m-1} == z
q.evals[--m] = FR_ZERO; q.evals[--m] = FR_ZERO;
for (i = 0; i < FIELD_ELEMENTS_PER_BLOB; i++) { for (i = 0; i < FIELD_ELEMENTS_PER_BLOB; i++) {
if (i == m) continue; if (i == m) continue;