mirror of
https://github.com/status-im/c-kzg-4844.git
synced 2025-01-16 05:04:12 +00:00
Remove simple blst wrapper funcs (#82)
* Remove simple blst wrapper funcs * Fix minor nit
This commit is contained in:
parent
4c115844e2
commit
ae81453aaa
134
src/c_kzg_4844.c
134
src/c_kzg_4844.c
@ -92,7 +92,7 @@ static const g2_t g2_generator = {{{{
|
||||
* The first 32 roots of unity in the finite field F_r.
|
||||
*
|
||||
* For element `{A, B, C, D}`, the field element value is `A + B * 2^64 + C * 2^128 + D * 2^192`. This format may be
|
||||
* converted to an `fr_t` type via the #fr_from_uint64s library function.
|
||||
* converted to an `fr_t` type via the #blst_fr_from_uint64 function.
|
||||
*
|
||||
* The decimal values may be calculated with the following Python code:
|
||||
* @code{.py}
|
||||
@ -235,16 +235,6 @@ static int log_2_byte(byte b) {
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a field element from an array of four 64-bit unsigned integers.
|
||||
*
|
||||
* @param out The field element equivalent of @p vals
|
||||
* @param vals The array of 64-bit integers to be converted, little-endian ordering of the 64-bit words
|
||||
*/
|
||||
static void fr_from_uint64s(fr_t *out, const uint64_t vals[4]) {
|
||||
blst_fr_from_uint64(out, vals);
|
||||
}
|
||||
|
||||
/**
|
||||
* Test whether the operand is one in the finite field.
|
||||
*
|
||||
@ -275,39 +265,6 @@ static bool fr_equal(const fr_t *aa, const fr_t *bb) {
|
||||
return a[0] == b[0] && a[1] == b[1] && a[2] == b[2] && a[3] == b[3];
|
||||
}
|
||||
|
||||
/**
|
||||
* Add two field elements.
|
||||
*
|
||||
* @param[out] out @p a plus @p b in the field
|
||||
* @param[in] a Field element
|
||||
* @param[in] b Field element
|
||||
*/
|
||||
static void fr_add(fr_t *out, const fr_t *a, const fr_t *b) {
|
||||
blst_fr_add(out, a, b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract one field element from another.
|
||||
*
|
||||
* @param[out] out @p a minus @p b in the field
|
||||
* @param[in] a Field element
|
||||
* @param[in] b Field element
|
||||
*/
|
||||
static void fr_sub(fr_t *out, const fr_t *a, const fr_t *b) {
|
||||
blst_fr_sub(out, a, b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply two field elements.
|
||||
*
|
||||
* @param[out] out @p a multiplied by @p b in the field
|
||||
* @param[in] a Multiplicand
|
||||
* @param[in] b Multiplier
|
||||
*/
|
||||
static void fr_mul(fr_t *out, const fr_t *a, const fr_t *b) {
|
||||
blst_fr_mul(out, a, b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Divide a field element by another.
|
||||
*
|
||||
@ -321,16 +278,6 @@ static void fr_div(fr_t *out, const fr_t *a, const fr_t *b) {
|
||||
blst_fr_mul(out, a, &tmp);
|
||||
}
|
||||
|
||||
/**
|
||||
* Square a field element.
|
||||
*
|
||||
* @param[out] out @p a squared
|
||||
* @param[in] a A field element
|
||||
*/
|
||||
static void fr_sqr(fr_t *out, const fr_t *a) {
|
||||
blst_fr_sqr(out, a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Exponentiation of a field element.
|
||||
*
|
||||
@ -348,10 +295,10 @@ static void fr_pow(fr_t *out, const fr_t *a, uint64_t n) {
|
||||
|
||||
while (true) {
|
||||
if (n & 1) {
|
||||
fr_mul(out, out, &tmp);
|
||||
blst_fr_mul(out, out, &tmp);
|
||||
}
|
||||
if ((n >>= 1) == 0) break;
|
||||
fr_sqr(&tmp, &tmp);
|
||||
blst_fr_sqr(&tmp, &tmp);
|
||||
}
|
||||
}
|
||||
|
||||
@ -365,17 +312,7 @@ static void fr_pow(fr_t *out, const fr_t *a, uint64_t n) {
|
||||
*/
|
||||
static void fr_from_uint64(fr_t *out, uint64_t n) {
|
||||
uint64_t vals[] = {n, 0, 0, 0};
|
||||
fr_from_uint64s(out, vals);
|
||||
}
|
||||
|
||||
/**
|
||||
* Inverse of a field element.
|
||||
*
|
||||
* @param[out] out The inverse of @p a
|
||||
* @param[in] a A field element
|
||||
*/
|
||||
static void fr_inv(fr_t *out, const fr_t *a) {
|
||||
blst_fr_eucl_inverse(out, a);
|
||||
blst_fr_from_uint64(out, vals);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -397,14 +334,14 @@ static C_KZG_RET fr_batch_inv(fr_t *out, const fr_t *a, size_t len) {
|
||||
prod[0] = a[0];
|
||||
|
||||
for(i = 1; i < len; i++) {
|
||||
fr_mul(&prod[i], &a[i], &prod[i - 1]);
|
||||
blst_fr_mul(&prod[i], &a[i], &prod[i - 1]);
|
||||
}
|
||||
|
||||
blst_fr_eucl_inverse(&inv, &prod[len - 1]);
|
||||
|
||||
for(i = len - 1; i > 0; i--) {
|
||||
fr_mul(&out[i], &inv, &prod[i - 1]);
|
||||
fr_mul(&inv, &a[i], &inv);
|
||||
blst_fr_mul(&out[i], &inv, &prod[i - 1]);
|
||||
blst_fr_mul(&inv, &a[i], &inv);
|
||||
}
|
||||
out[0] = inv;
|
||||
|
||||
@ -413,19 +350,6 @@ out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Add or double G1 points.
|
||||
*
|
||||
* This is safe if the two points are the same.
|
||||
*
|
||||
* @param[out] out @p a plus @p b in the group
|
||||
* @param[in] a G1 group point
|
||||
* @param[in] b G1 group point
|
||||
*/
|
||||
static void g1_add_or_dbl(g1_t *out, const g1_t *a, const g1_t *b) {
|
||||
blst_p1_add_or_double(out, a, b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply a G1 group element by a field element.
|
||||
*
|
||||
@ -837,8 +761,8 @@ static void poly_lincomb(Polynomial *out, const Polynomial *vectors, const fr_t
|
||||
out->evals[j] = fr_zero;
|
||||
for (i = 0; i < n; i++) {
|
||||
for (j = 0; j < FIELD_ELEMENTS_PER_BLOB; j++) {
|
||||
fr_mul(&tmp, &scalars[i], &vectors[i].evals[j]);
|
||||
fr_add(&out->evals[j], &out->evals[j], &tmp);
|
||||
blst_fr_mul(&tmp, &scalars[i], &vectors[i].evals[j]);
|
||||
blst_fr_add(&out->evals[j], &out->evals[j], &tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -848,7 +772,7 @@ static void compute_powers(fr_t *out, fr_t *x, uint64_t n) {
|
||||
fr_t current_power = fr_one;
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
out[i] = current_power;
|
||||
fr_mul(¤t_power, ¤t_power, x);
|
||||
blst_fr_mul(¤t_power, ¤t_power, x);
|
||||
}
|
||||
}
|
||||
|
||||
@ -875,7 +799,7 @@ static C_KZG_RET evaluate_polynomial_in_evaluation_form(fr_t *out, const Polynom
|
||||
ret = C_KZG_OK;
|
||||
goto out;
|
||||
}
|
||||
fr_sub(&inverses_in[i], x, &roots_of_unity[i]);
|
||||
blst_fr_sub(&inverses_in[i], x, &roots_of_unity[i]);
|
||||
}
|
||||
|
||||
ret = fr_batch_inv(inverses, inverses_in, FIELD_ELEMENTS_PER_BLOB);
|
||||
@ -883,15 +807,15 @@ static C_KZG_RET evaluate_polynomial_in_evaluation_form(fr_t *out, const Polynom
|
||||
|
||||
*out = fr_zero;
|
||||
for (i = 0; i < FIELD_ELEMENTS_PER_BLOB; i++) {
|
||||
fr_mul(&tmp, &inverses[i], &roots_of_unity[i]);
|
||||
fr_mul(&tmp, &tmp, &p->evals[i]);
|
||||
fr_add(out, out, &tmp);
|
||||
blst_fr_mul(&tmp, &inverses[i], &roots_of_unity[i]);
|
||||
blst_fr_mul(&tmp, &tmp, &p->evals[i]);
|
||||
blst_fr_add(out, out, &tmp);
|
||||
}
|
||||
fr_from_uint64(&tmp, FIELD_ELEMENTS_PER_BLOB);
|
||||
fr_div(out, out, &tmp);
|
||||
fr_pow(&tmp, x, FIELD_ELEMENTS_PER_BLOB);
|
||||
fr_sub(&tmp, &tmp, &fr_one);
|
||||
fr_mul(out, out, &tmp);
|
||||
blst_fr_sub(&tmp, &tmp, &fr_one);
|
||||
blst_fr_mul(out, out, &tmp);
|
||||
|
||||
out:
|
||||
free(inverses_in);
|
||||
@ -1008,15 +932,15 @@ static C_KZG_RET compute_kzg_proof(g1_t *out, const Polynomial *p, const fr_t *x
|
||||
continue;
|
||||
}
|
||||
// (p_i - y) / (ω_i - x)
|
||||
fr_sub(&q.evals[i], &p->evals[i], &y);
|
||||
fr_sub(&inverses_in[i], &roots_of_unity[i], x);
|
||||
blst_fr_sub(&q.evals[i], &p->evals[i], &y);
|
||||
blst_fr_sub(&inverses_in[i], &roots_of_unity[i], x);
|
||||
}
|
||||
|
||||
ret = fr_batch_inv(inverses, inverses_in, FIELD_ELEMENTS_PER_BLOB);
|
||||
if (ret != C_KZG_OK) goto out;
|
||||
|
||||
for (i = 0; i < FIELD_ELEMENTS_PER_BLOB; i++) {
|
||||
fr_mul(&q.evals[i], &q.evals[i], &inverses[i]);
|
||||
blst_fr_mul(&q.evals[i], &q.evals[i], &inverses[i]);
|
||||
}
|
||||
|
||||
if (m) { // ω_m == x
|
||||
@ -1024,16 +948,16 @@ static C_KZG_RET compute_kzg_proof(g1_t *out, const Polynomial *p, const fr_t *x
|
||||
for (i = 0; i < FIELD_ELEMENTS_PER_BLOB; i++) {
|
||||
if (i == m) continue;
|
||||
// (p_i - y) * ω_i / (x * (x - ω_i))
|
||||
fr_sub(&tmp, x, &roots_of_unity[i]);
|
||||
fr_mul(&inverses_in[i], &tmp, x);
|
||||
blst_fr_sub(&tmp, x, &roots_of_unity[i]);
|
||||
blst_fr_mul(&inverses_in[i], &tmp, x);
|
||||
}
|
||||
ret = fr_batch_inv(inverses, inverses_in, FIELD_ELEMENTS_PER_BLOB);
|
||||
if (ret != C_KZG_OK) goto out;
|
||||
for (i = 0; i < FIELD_ELEMENTS_PER_BLOB; i++) {
|
||||
fr_sub(&tmp, &p->evals[i], &y);
|
||||
fr_mul(&tmp, &tmp, &roots_of_unity[i]);
|
||||
fr_mul(&tmp, &tmp, &inverses[i]);
|
||||
fr_add(&q.evals[m], &q.evals[m], &tmp);
|
||||
blst_fr_sub(&tmp, &p->evals[i], &y);
|
||||
blst_fr_mul(&tmp, &tmp, &roots_of_unity[i]);
|
||||
blst_fr_mul(&tmp, &tmp, &inverses[i]);
|
||||
blst_fr_add(&q.evals[m], &q.evals[m], &tmp);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1195,7 +1119,7 @@ static void fft_g1_fast(g1_t *out, const g1_t *in, uint64_t stride, const fr_t *
|
||||
g1_t y_times_root;
|
||||
g1_mul(&y_times_root, &out[i + half], &roots[i * roots_stride]);
|
||||
g1_sub(&out[i + half], &out[i], &y_times_root);
|
||||
g1_add_or_dbl(&out[i], &out[i], &y_times_root);
|
||||
blst_p1_add_or_double(&out[i], &out[i], &y_times_root);
|
||||
}
|
||||
} else {
|
||||
*out = *in;
|
||||
@ -1220,7 +1144,7 @@ static C_KZG_RET fft_g1(g1_t *out, const g1_t *in, bool inverse, uint64_t n, con
|
||||
if (inverse) {
|
||||
fr_t inv_len;
|
||||
fr_from_uint64(&inv_len, n);
|
||||
fr_inv(&inv_len, &inv_len);
|
||||
blst_fr_eucl_inverse(&inv_len, &inv_len);
|
||||
fft_g1_fast(out, in, 1, fs->reverse_roots_of_unity, stride, n);
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
g1_mul(&out[i], &out[i], &inv_len);
|
||||
@ -1249,7 +1173,7 @@ static C_KZG_RET expand_root_of_unity(fr_t *out, const fr_t *root, uint64_t widt
|
||||
|
||||
for (uint64_t i = 2; !fr_is_one(&out[i - 1]); i++) {
|
||||
CHECK(i <= width);
|
||||
fr_mul(&out[i], &out[i - 1], root);
|
||||
blst_fr_mul(&out[i], &out[i - 1], root);
|
||||
}
|
||||
CHECK(fr_is_one(&out[width]));
|
||||
|
||||
@ -1286,7 +1210,7 @@ static C_KZG_RET new_fft_settings(FFTSettings *fs, unsigned int max_scale) {
|
||||
fs->roots_of_unity = NULL;
|
||||
|
||||
CHECK((max_scale < sizeof scale2_root_of_unity / sizeof scale2_root_of_unity[0]));
|
||||
fr_from_uint64s(&root_of_unity, scale2_root_of_unity[max_scale]);
|
||||
blst_fr_from_uint64(&root_of_unity, scale2_root_of_unity[max_scale]);
|
||||
|
||||
// Allocate space for the roots of unity
|
||||
ret = new_fr_array(&fs->expanded_roots_of_unity, fs->max_width + 1);
|
||||
|
Loading…
x
Reference in New Issue
Block a user