Finish adding implementation, simplify Makefile

This commit is contained in:
Ramana Kumar 2022-09-27 21:50:48 +01:00
parent 265e60c2db
commit 9b46788ac7
No known key found for this signature in database
GPG Key ID: ED471C788B900433
2 changed files with 199 additions and 23 deletions

View File

@ -1,17 +1,5 @@
INCLUDE_DIRS = ../inc INCLUDE_DIRS = ../inc
CFLAGS += -O2
.PRECIOUS: %.o c_kzg_4844.o: c_kzg_4844.c Makefile
clang -Wall -I$(INCLUDE_DIRS) $(CFLAGS) -c $<
%.o: %.c Makefile
clang -Wall -I$(INCLUDE_DIRS) $(CFLAGS) $(KZG_CFLAGS) -c $*.c
libckzg4844.a: c_kzg_4844.o Makefile
ar rc libckzg4844.a $<
lib: KZG_CFLAGS += -O
lib: clean libckzg4844.a
clean:
rm -f *.o
rm -f libckzg4844.a
rm -f a.out

View File

@ -139,6 +139,21 @@ static bool fr_is_one(const fr_t *p) {
return a[0] == 1 && a[1] == 0 && a[2] == 0 && a[3] == 0; return a[0] == 1 && a[1] == 0 && a[2] == 0 && a[3] == 0;
} }
/**
* Test whether two field elements are equal.
*
* @param[in] aa The first element
* @param[in] bb The second element
* @retval true if @p aa and @p bb are equal
* @retval false otherwise
*/
static bool fr_equal(const fr_t *aa, const fr_t *bb) {
uint64_t a[4], b[4];
blst_uint64_from_fr(a, aa);
blst_uint64_from_fr(b, bb);
return a[0] == b[0] && a[1] == b[1] && a[2] == b[2] && a[3] == b[3];
}
/** /**
* Add two field elements. * Add two field elements.
* *
@ -150,6 +165,17 @@ static void fr_add(fr_t *out, const fr_t *a, const fr_t *b) {
blst_fr_add(out, a, b); blst_fr_add(out, a, b);
} }
/**
* Subtract one field element from another.
*
* @param[out] out @p a minus @p b in the field
* @param[in] a Field element
* @param[in] b Field element
*/
static void fr_sub(fr_t *out, const fr_t *a, const fr_t *b) {
blst_fr_sub(out, a, b);
}
/** /**
* Multiply two field elements. * Multiply two field elements.
* *
@ -161,6 +187,19 @@ static void fr_mul(fr_t *out, const fr_t *a, const fr_t *b) {
blst_fr_mul(out, a, b); blst_fr_mul(out, a, b);
} }
/**
* Division of two field elements.
*
* @param[out] out @p a divided by @p b in the field
* @param[in] a The dividend
* @param[in] b The divisor
*/
static void fr_div(fr_t *out, const fr_t *a, const fr_t *b) {
blst_fr tmp;
blst_fr_eucl_inverse(&tmp, b);
blst_fr_mul(out, a, &tmp);
}
/** /**
* Square a field element. * Square a field element.
* *
@ -171,6 +210,30 @@ static void fr_sqr(fr_t *out, const fr_t *a) {
blst_fr_sqr(out, a); blst_fr_sqr(out, a);
} }
/**
* Exponentiation of a field element.
*
* Uses square and multiply for log(@p n) performance.
*
* @remark A 64-bit exponent is sufficient for our needs here.
*
* @param[out] out @p a raised to the power of @p n
* @param[in] a The field element to be exponentiated
* @param[in] n The exponent
*/
static void fr_pow(fr_t *out, const fr_t *a, uint64_t n) {
fr_t tmp = *a;
*out = fr_one;
while (true) {
if (n & 1) {
fr_mul(out, out, &tmp);
}
if ((n >>= 1) == 0) break;
fr_sqr(&tmp, &tmp);
}
}
/** /**
* Create a field element from a single 64-bit unsigned integer. * Create a field element from a single 64-bit unsigned integer.
* *
@ -194,6 +257,39 @@ static void fr_inv(fr_t *out, const fr_t *a) {
blst_fr_eucl_inverse(out, a); blst_fr_eucl_inverse(out, a);
} }
/**
* Montgomery batch inversion in finite field
*
* @param[out] out The inverses of @p a, length @p len
* @param[in] a A vector of field elements, length @p len
* @param[in] len Length
*/
static C_KZG_RET fr_batch_inv(fr_t *out, const fr_t *a, size_t len) {
fr_t *prod;
fr_t inv;
size_t i;
TRY(new_fr_array(&prod, len));
prod[0] = a[0];
for(i = 1; i < len; i++) {
fr_mul(&prod[i], &a[i], &prod[i - 1]);
}
blst_fr_eucl_inverse(&inv, &prod[len - 1]);
for(i = len - 1; i > 0; i--) {
fr_mul(&out[i], &inv, &prod[i - 1]);
fr_mul(&inv, &a[i], &inv);
}
out[0] = inv;
free(prod);
return C_KZG_OK;
}
/** The G1 identity/infinity */ /** The G1 identity/infinity */
static const g1_t g1_identity = {{0L, 0L, 0L, 0L, 0L, 0L}, {0L, 0L, 0L, 0L, 0L, 0L}, {0L, 0L, 0L, 0L, 0L, 0L}}; static const g1_t g1_identity = {{0L, 0L, 0L, 0L, 0L, 0L}, {0L, 0L, 0L, 0L, 0L, 0L}, {0L, 0L, 0L, 0L, 0L, 0L}};
@ -841,14 +937,106 @@ C_KZG_RET verify_kzg_proof(bool *out, const g1_t *commitment, const fr_t *x, con
return C_KZG_OK; return C_KZG_OK;
} }
/* /**
C_KZG_RET compute_kzg_proof(KZGProof *out, const PolynomialEvalForm *polynomial, const BLSFieldElement *z, const KZGSettings *s) { * Compute KZG proof for polynomial in Lagrange form at position x
BLSFieldElement value; *
TRY(evaluate_polynomial_in_evaluation_form(&value, polynomial, z, s)); * @param[out] out The combined proof as a single G1 element
return compute_proof_single_l(out, polynomial, z, &value, s); * @param[in] p The polynomial in Lagrange form
* @param[in] x The generator x-value for the evaluation points
* @param[in] s The settings containing the secrets, previously initialised with #new_kzg_settings
* @retval C_KZG_OK All is well
* @retval C_KZG_ERROR An internal error occurred
* @retval C_KZG_MALLOC Memory allocation failed
*/
C_KZG_RET compute_kzg_proof(KZGProof *out, const PolynomialEvalForm *p, const BLSFieldElement *x, const KZGSettings *s) {
CHECK(p->length <= s->length);
BLSFieldElement y;
TRY(evaluate_polynomial_in_evaluation_form(&y, p, x, s));
fr_t tmp, tmp2;
PolynomialEvalForm q;
const fr_t *roots_of_unity = s->fs->roots_of_unity;
uint64_t i, m = 0;
q.length = p->length;
TRY(new_fr_array(&q.values, q.length));
fr_t *inverses_in, *inverses;
TRY(new_fr_array(&inverses_in, p->length));
TRY(new_fr_array(&inverses, p->length));
for (i = 0; i < q.length; i++) {
if (fr_equal(x, &roots_of_unity[i])) {
m = i + 1;
continue;
}
// (p_i - y) / (ω_i - x)
fr_sub(&q.values[i], &p->values[i], &y);
fr_sub(&inverses_in[i], &roots_of_unity[i], x);
}
TRY(fr_batch_inv(inverses, inverses_in, q.length));
for (i = 0; i < q.length; i++) {
fr_mul(&q.values[i], &q.values[i], &inverses[i]);
}
if (m) { // ω_m == x
q.values[--m] = fr_zero;
for (i=0; i < q.length; i++) {
if (i == m) continue;
// (p_i - y) * ω_i / (x * (x - ω_i))
fr_sub(&tmp, x, &roots_of_unity[i]);
fr_mul(&inverses_in[i], &tmp, x);
}
TRY(fr_batch_inv(inverses, inverses_in, q.length));
for (i=0; i < q.length; i++) {
fr_sub(&tmp2, &p->values[i], &y);
fr_mul(&tmp, &tmp2, &inverses[i]);
fr_mul(&tmp, &tmp, &roots_of_unity[i]);
fr_add(&q.values[m], &q.values[m], &tmp);
}
}
free(inverses_in);
free(inverses);
g1_lincomb(out, s->g1_values, p->values, p->length);
return C_KZG_OK;
} }
C_KZG_RET evaluate_polynomial_in_evaluation_form(BLSFieldElement *out, const PolynomialEvalForm *polynomial, const BLSFieldElement *z, const KZGSettings *s) { C_KZG_RET evaluate_polynomial_in_evaluation_form(BLSFieldElement *out, const PolynomialEvalForm *p, const BLSFieldElement *x, const KZGSettings *s) {
return eval_poly_l(out, polynomial, z, s->fs); fr_t tmp, *inverses_in, *inverses;
uint64_t i;
const uint64_t stride = s->fs->max_width / p->length;
const fr_t *roots_of_unity = s->fs->roots_of_unity;
TRY(new_fr_array(&inverses_in, p->length));
TRY(new_fr_array(&inverses, p->length));
for (i = 0; i < p->length; i++) {
if (fr_equal(x, &roots_of_unity[i * stride])) {
*out = p->values[i];
free(inverses_in);
free(inverses);
return C_KZG_OK;
}
fr_sub(&inverses_in[i], x, &roots_of_unity[i * stride]);
}
TRY(fr_batch_inv(inverses, inverses_in, p->length));
*out = fr_zero;
for (i = 0; i < p->length; i++) {
fr_mul(&tmp, &inverses[i], &roots_of_unity[i * stride]);
fr_mul(&tmp, &tmp, &p->values[i]);
fr_add(out, out, &tmp);
}
fr_from_uint64(&tmp, p->length);
fr_div(out, out, &tmp);
fr_pow(&tmp, x, p->length);
fr_sub(&tmp, &tmp, &fr_one);
fr_mul(out, out, &tmp);
free(inverses_in);
free(inverses);
return C_KZG_OK;
} }
*/