Finish adding implementation, simplify Makefile
This commit is contained in:
parent
265e60c2db
commit
9b46788ac7
|
@ -1,17 +1,5 @@
|
||||||
INCLUDE_DIRS = ../inc
|
INCLUDE_DIRS = ../inc
|
||||||
|
CFLAGS += -O2
|
||||||
|
|
||||||
.PRECIOUS: %.o
|
c_kzg_4844.o: c_kzg_4844.c Makefile
|
||||||
|
clang -Wall -I$(INCLUDE_DIRS) $(CFLAGS) -c $<
|
||||||
%.o: %.c Makefile
|
|
||||||
clang -Wall -I$(INCLUDE_DIRS) $(CFLAGS) $(KZG_CFLAGS) -c $*.c
|
|
||||||
|
|
||||||
libckzg4844.a: c_kzg_4844.o Makefile
|
|
||||||
ar rc libckzg4844.a $<
|
|
||||||
|
|
||||||
lib: KZG_CFLAGS += -O
|
|
||||||
lib: clean libckzg4844.a
|
|
||||||
|
|
||||||
clean:
|
|
||||||
rm -f *.o
|
|
||||||
rm -f libckzg4844.a
|
|
||||||
rm -f a.out
|
|
||||||
|
|
|
@ -139,6 +139,21 @@ static bool fr_is_one(const fr_t *p) {
|
||||||
return a[0] == 1 && a[1] == 0 && a[2] == 0 && a[3] == 0;
|
return a[0] == 1 && a[1] == 0 && a[2] == 0 && a[3] == 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Test whether two field elements are equal.
|
||||||
|
*
|
||||||
|
* @param[in] aa The first element
|
||||||
|
* @param[in] bb The second element
|
||||||
|
* @retval true if @p aa and @p bb are equal
|
||||||
|
* @retval false otherwise
|
||||||
|
*/
|
||||||
|
static bool fr_equal(const fr_t *aa, const fr_t *bb) {
|
||||||
|
uint64_t a[4], b[4];
|
||||||
|
blst_uint64_from_fr(a, aa);
|
||||||
|
blst_uint64_from_fr(b, bb);
|
||||||
|
return a[0] == b[0] && a[1] == b[1] && a[2] == b[2] && a[3] == b[3];
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Add two field elements.
|
* Add two field elements.
|
||||||
*
|
*
|
||||||
|
@ -150,6 +165,17 @@ static void fr_add(fr_t *out, const fr_t *a, const fr_t *b) {
|
||||||
blst_fr_add(out, a, b);
|
blst_fr_add(out, a, b);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Subtract one field element from another.
|
||||||
|
*
|
||||||
|
* @param[out] out @p a minus @p b in the field
|
||||||
|
* @param[in] a Field element
|
||||||
|
* @param[in] b Field element
|
||||||
|
*/
|
||||||
|
static void fr_sub(fr_t *out, const fr_t *a, const fr_t *b) {
|
||||||
|
blst_fr_sub(out, a, b);
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Multiply two field elements.
|
* Multiply two field elements.
|
||||||
*
|
*
|
||||||
|
@ -161,6 +187,19 @@ static void fr_mul(fr_t *out, const fr_t *a, const fr_t *b) {
|
||||||
blst_fr_mul(out, a, b);
|
blst_fr_mul(out, a, b);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Division of two field elements.
|
||||||
|
*
|
||||||
|
* @param[out] out @p a divided by @p b in the field
|
||||||
|
* @param[in] a The dividend
|
||||||
|
* @param[in] b The divisor
|
||||||
|
*/
|
||||||
|
static void fr_div(fr_t *out, const fr_t *a, const fr_t *b) {
|
||||||
|
blst_fr tmp;
|
||||||
|
blst_fr_eucl_inverse(&tmp, b);
|
||||||
|
blst_fr_mul(out, a, &tmp);
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Square a field element.
|
* Square a field element.
|
||||||
*
|
*
|
||||||
|
@ -171,6 +210,30 @@ static void fr_sqr(fr_t *out, const fr_t *a) {
|
||||||
blst_fr_sqr(out, a);
|
blst_fr_sqr(out, a);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Exponentiation of a field element.
|
||||||
|
*
|
||||||
|
* Uses square and multiply for log(@p n) performance.
|
||||||
|
*
|
||||||
|
* @remark A 64-bit exponent is sufficient for our needs here.
|
||||||
|
*
|
||||||
|
* @param[out] out @p a raised to the power of @p n
|
||||||
|
* @param[in] a The field element to be exponentiated
|
||||||
|
* @param[in] n The exponent
|
||||||
|
*/
|
||||||
|
static void fr_pow(fr_t *out, const fr_t *a, uint64_t n) {
|
||||||
|
fr_t tmp = *a;
|
||||||
|
*out = fr_one;
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
if (n & 1) {
|
||||||
|
fr_mul(out, out, &tmp);
|
||||||
|
}
|
||||||
|
if ((n >>= 1) == 0) break;
|
||||||
|
fr_sqr(&tmp, &tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create a field element from a single 64-bit unsigned integer.
|
* Create a field element from a single 64-bit unsigned integer.
|
||||||
*
|
*
|
||||||
|
@ -194,6 +257,39 @@ static void fr_inv(fr_t *out, const fr_t *a) {
|
||||||
blst_fr_eucl_inverse(out, a);
|
blst_fr_eucl_inverse(out, a);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Montgomery batch inversion in finite field
|
||||||
|
*
|
||||||
|
* @param[out] out The inverses of @p a, length @p len
|
||||||
|
* @param[in] a A vector of field elements, length @p len
|
||||||
|
* @param[in] len Length
|
||||||
|
*/
|
||||||
|
static C_KZG_RET fr_batch_inv(fr_t *out, const fr_t *a, size_t len) {
|
||||||
|
fr_t *prod;
|
||||||
|
fr_t inv;
|
||||||
|
size_t i;
|
||||||
|
|
||||||
|
TRY(new_fr_array(&prod, len));
|
||||||
|
|
||||||
|
prod[0] = a[0];
|
||||||
|
|
||||||
|
for(i = 1; i < len; i++) {
|
||||||
|
fr_mul(&prod[i], &a[i], &prod[i - 1]);
|
||||||
|
}
|
||||||
|
|
||||||
|
blst_fr_eucl_inverse(&inv, &prod[len - 1]);
|
||||||
|
|
||||||
|
for(i = len - 1; i > 0; i--) {
|
||||||
|
fr_mul(&out[i], &inv, &prod[i - 1]);
|
||||||
|
fr_mul(&inv, &a[i], &inv);
|
||||||
|
}
|
||||||
|
out[0] = inv;
|
||||||
|
|
||||||
|
free(prod);
|
||||||
|
|
||||||
|
return C_KZG_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
/** The G1 identity/infinity */
|
/** The G1 identity/infinity */
|
||||||
static const g1_t g1_identity = {{0L, 0L, 0L, 0L, 0L, 0L}, {0L, 0L, 0L, 0L, 0L, 0L}, {0L, 0L, 0L, 0L, 0L, 0L}};
|
static const g1_t g1_identity = {{0L, 0L, 0L, 0L, 0L, 0L}, {0L, 0L, 0L, 0L, 0L, 0L}, {0L, 0L, 0L, 0L, 0L, 0L}};
|
||||||
|
@ -841,14 +937,106 @@ C_KZG_RET verify_kzg_proof(bool *out, const g1_t *commitment, const fr_t *x, con
|
||||||
return C_KZG_OK;
|
return C_KZG_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/**
|
||||||
C_KZG_RET compute_kzg_proof(KZGProof *out, const PolynomialEvalForm *polynomial, const BLSFieldElement *z, const KZGSettings *s) {
|
* Compute KZG proof for polynomial in Lagrange form at position x
|
||||||
BLSFieldElement value;
|
*
|
||||||
TRY(evaluate_polynomial_in_evaluation_form(&value, polynomial, z, s));
|
* @param[out] out The combined proof as a single G1 element
|
||||||
return compute_proof_single_l(out, polynomial, z, &value, s);
|
* @param[in] p The polynomial in Lagrange form
|
||||||
|
* @param[in] x The generator x-value for the evaluation points
|
||||||
|
* @param[in] s The settings containing the secrets, previously initialised with #new_kzg_settings
|
||||||
|
* @retval C_KZG_OK All is well
|
||||||
|
* @retval C_KZG_ERROR An internal error occurred
|
||||||
|
* @retval C_KZG_MALLOC Memory allocation failed
|
||||||
|
*/
|
||||||
|
C_KZG_RET compute_kzg_proof(KZGProof *out, const PolynomialEvalForm *p, const BLSFieldElement *x, const KZGSettings *s) {
|
||||||
|
CHECK(p->length <= s->length);
|
||||||
|
|
||||||
|
BLSFieldElement y;
|
||||||
|
TRY(evaluate_polynomial_in_evaluation_form(&y, p, x, s));
|
||||||
|
|
||||||
|
fr_t tmp, tmp2;
|
||||||
|
PolynomialEvalForm q;
|
||||||
|
const fr_t *roots_of_unity = s->fs->roots_of_unity;
|
||||||
|
uint64_t i, m = 0;
|
||||||
|
|
||||||
|
q.length = p->length;
|
||||||
|
TRY(new_fr_array(&q.values, q.length));
|
||||||
|
|
||||||
|
fr_t *inverses_in, *inverses;
|
||||||
|
|
||||||
|
TRY(new_fr_array(&inverses_in, p->length));
|
||||||
|
TRY(new_fr_array(&inverses, p->length));
|
||||||
|
|
||||||
|
for (i = 0; i < q.length; i++) {
|
||||||
|
if (fr_equal(x, &roots_of_unity[i])) {
|
||||||
|
m = i + 1;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// (p_i - y) / (ω_i - x)
|
||||||
|
fr_sub(&q.values[i], &p->values[i], &y);
|
||||||
|
fr_sub(&inverses_in[i], &roots_of_unity[i], x);
|
||||||
|
}
|
||||||
|
|
||||||
|
TRY(fr_batch_inv(inverses, inverses_in, q.length));
|
||||||
|
|
||||||
|
for (i = 0; i < q.length; i++) {
|
||||||
|
fr_mul(&q.values[i], &q.values[i], &inverses[i]);
|
||||||
|
}
|
||||||
|
if (m) { // ω_m == x
|
||||||
|
q.values[--m] = fr_zero;
|
||||||
|
for (i=0; i < q.length; i++) {
|
||||||
|
if (i == m) continue;
|
||||||
|
// (p_i - y) * ω_i / (x * (x - ω_i))
|
||||||
|
fr_sub(&tmp, x, &roots_of_unity[i]);
|
||||||
|
fr_mul(&inverses_in[i], &tmp, x);
|
||||||
|
}
|
||||||
|
TRY(fr_batch_inv(inverses, inverses_in, q.length));
|
||||||
|
for (i=0; i < q.length; i++) {
|
||||||
|
fr_sub(&tmp2, &p->values[i], &y);
|
||||||
|
fr_mul(&tmp, &tmp2, &inverses[i]);
|
||||||
|
fr_mul(&tmp, &tmp, &roots_of_unity[i]);
|
||||||
|
fr_add(&q.values[m], &q.values[m], &tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
free(inverses_in);
|
||||||
|
free(inverses);
|
||||||
|
g1_lincomb(out, s->g1_values, p->values, p->length);
|
||||||
|
return C_KZG_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
C_KZG_RET evaluate_polynomial_in_evaluation_form(BLSFieldElement *out, const PolynomialEvalForm *polynomial, const BLSFieldElement *z, const KZGSettings *s) {
|
C_KZG_RET evaluate_polynomial_in_evaluation_form(BLSFieldElement *out, const PolynomialEvalForm *p, const BLSFieldElement *x, const KZGSettings *s) {
|
||||||
return eval_poly_l(out, polynomial, z, s->fs);
|
fr_t tmp, *inverses_in, *inverses;
|
||||||
|
uint64_t i;
|
||||||
|
const uint64_t stride = s->fs->max_width / p->length;
|
||||||
|
const fr_t *roots_of_unity = s->fs->roots_of_unity;
|
||||||
|
|
||||||
|
TRY(new_fr_array(&inverses_in, p->length));
|
||||||
|
TRY(new_fr_array(&inverses, p->length));
|
||||||
|
for (i = 0; i < p->length; i++) {
|
||||||
|
if (fr_equal(x, &roots_of_unity[i * stride])) {
|
||||||
|
*out = p->values[i];
|
||||||
|
free(inverses_in);
|
||||||
|
free(inverses);
|
||||||
|
return C_KZG_OK;
|
||||||
|
}
|
||||||
|
fr_sub(&inverses_in[i], x, &roots_of_unity[i * stride]);
|
||||||
|
}
|
||||||
|
TRY(fr_batch_inv(inverses, inverses_in, p->length));
|
||||||
|
|
||||||
|
*out = fr_zero;
|
||||||
|
for (i = 0; i < p->length; i++) {
|
||||||
|
fr_mul(&tmp, &inverses[i], &roots_of_unity[i * stride]);
|
||||||
|
fr_mul(&tmp, &tmp, &p->values[i]);
|
||||||
|
fr_add(out, out, &tmp);
|
||||||
|
}
|
||||||
|
fr_from_uint64(&tmp, p->length);
|
||||||
|
fr_div(out, out, &tmp);
|
||||||
|
fr_pow(&tmp, x, p->length);
|
||||||
|
fr_sub(&tmp, &tmp, &fr_one);
|
||||||
|
fr_mul(out, out, &tmp);
|
||||||
|
|
||||||
|
free(inverses_in);
|
||||||
|
free(inverses);
|
||||||
|
|
||||||
|
return C_KZG_OK;
|
||||||
}
|
}
|
||||||
*/
|
|
||||||
|
|
Loading…
Reference in New Issue