mirror of
https://github.com/status-im/c-kzg-4844.git
synced 2025-01-11 18:54:11 +00:00
Merge pull request #57 from jtraglia/check-ret-python-binding
Check blob_to_kzg_commitment ret in python binding
This commit is contained in:
commit
7f4a8f0934
@ -48,7 +48,10 @@ static PyObject* blob_to_kzg_commitment_wrap(PyObject *self, PyObject *args) {
|
|||||||
|
|
||||||
if (k == NULL) return PyErr_NoMemory();
|
if (k == NULL) return PyErr_NoMemory();
|
||||||
|
|
||||||
blob_to_kzg_commitment(k, blob, PyCapsule_GetPointer(s, "KZGSettings"));
|
if (blob_to_kzg_commitment(k, blob, PyCapsule_GetPointer(s, "KZGSettings")) != C_KZG_OK) {
|
||||||
|
free(k);
|
||||||
|
return PyErr_Format(PyExc_RuntimeError, "blob_to_kzg_commitment failed");
|
||||||
|
}
|
||||||
|
|
||||||
return PyCapsule_New(k, "G1", free_G1);
|
return PyCapsule_New(k, "G1", free_G1);
|
||||||
}
|
}
|
||||||
|
@ -2,7 +2,7 @@ from py_ecc import optimized_bls12_381 as b
|
|||||||
from fft import fft
|
from fft import fft
|
||||||
from multicombs import lincomb
|
from multicombs import lincomb
|
||||||
|
|
||||||
# Generatore for the field
|
# Generator for the field
|
||||||
PRIMITIVE_ROOT = 7
|
PRIMITIVE_ROOT = 7
|
||||||
MODULUS = b.curve_order
|
MODULUS = b.curve_order
|
||||||
|
|
||||||
@ -35,7 +35,6 @@ def generate_setup(s, size):
|
|||||||
#
|
#
|
||||||
#########################################################################################
|
#########################################################################################
|
||||||
|
|
||||||
|
|
||||||
def get_root_of_unity(order):
|
def get_root_of_unity(order):
|
||||||
"""
|
"""
|
||||||
Returns a root of unity of order "order"
|
Returns a root of unity of order "order"
|
||||||
@ -79,7 +78,7 @@ def eval_poly_at(p, x):
|
|||||||
|
|
||||||
def div_polys(a, b):
|
def div_polys(a, b):
|
||||||
"""
|
"""
|
||||||
Long polynomial difivion for two polynomials in coefficient form
|
Long polynomial division for two polynomials in coefficient form
|
||||||
"""
|
"""
|
||||||
a = [x for x in a]
|
a = [x for x in a]
|
||||||
o = []
|
o = []
|
||||||
@ -101,7 +100,6 @@ def div_polys(a, b):
|
|||||||
#
|
#
|
||||||
#########################################################################################
|
#########################################################################################
|
||||||
|
|
||||||
|
|
||||||
def reverse_bit_order(n, order):
|
def reverse_bit_order(n, order):
|
||||||
"""
|
"""
|
||||||
Reverse the bit order of an integer n
|
Reverse the bit order of an integer n
|
||||||
@ -109,7 +107,6 @@ def reverse_bit_order(n, order):
|
|||||||
assert is_power_of_two(order)
|
assert is_power_of_two(order)
|
||||||
# Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order
|
# Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order
|
||||||
return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2)
|
return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2)
|
||||||
|
|
||||||
|
|
||||||
def list_to_reverse_bit_order(l):
|
def list_to_reverse_bit_order(l):
|
||||||
"""
|
"""
|
||||||
@ -117,7 +114,6 @@ def list_to_reverse_bit_order(l):
|
|||||||
"""
|
"""
|
||||||
return [l[reverse_bit_order(i, len(l))] for i in range(len(l))]
|
return [l[reverse_bit_order(i, len(l))] for i in range(len(l))]
|
||||||
|
|
||||||
|
|
||||||
#########################################################################################
|
#########################################################################################
|
||||||
#
|
#
|
||||||
# Converting between polynomials (in coefficient form) and data (in reverse bit order)
|
# Converting between polynomials (in coefficient form) and data (in reverse bit order)
|
||||||
@ -210,7 +206,7 @@ def check_proof_multi(commitment, proof, x, ys, setup):
|
|||||||
"""
|
"""
|
||||||
n = len(ys)
|
n = len(ys)
|
||||||
root_of_unity = get_root_of_unity(n)
|
root_of_unity = get_root_of_unity(n)
|
||||||
|
|
||||||
# Interpolate at a coset. Note because it is a coset, not the subgroup, we have to multiply the
|
# Interpolate at a coset. Note because it is a coset, not the subgroup, we have to multiply the
|
||||||
# polynomial coefficients by x^i
|
# polynomial coefficients by x^i
|
||||||
interpolation_polynomial = fft(ys, MODULUS, root_of_unity, True)
|
interpolation_polynomial = fft(ys, MODULUS, root_of_unity, True)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user