Add py_ecc tests to min-bindings
This commit is contained in:
parent
67804099bc
commit
2e435a7e26
|
@ -3,7 +3,7 @@ from fft import fft
|
|||
from multicombs import lincomb
|
||||
|
||||
# Generatore for the field
|
||||
PRIMITIVE_ROOT = 5
|
||||
PRIMITIVE_ROOT = 7
|
||||
MODULUS = b.curve_order
|
||||
|
||||
assert pow(PRIMITIVE_ROOT, (MODULUS - 1) // 2, MODULUS) != 1
|
||||
|
|
|
@ -0,0 +1,120 @@
|
|||
|
||||
from py_ecc import optimized_bls12_381 as b
|
||||
|
||||
def _simple_ft(vals, modulus, roots_of_unity):
|
||||
L = len(roots_of_unity)
|
||||
o = []
|
||||
for i in range(L):
|
||||
last = b.Z1 if type(vals[0]) == tuple else 0
|
||||
for j in range(L):
|
||||
if type(vals[0]) == tuple:
|
||||
last = b.add(last, b.multiply(vals[j], roots_of_unity[(i*j)%L]))
|
||||
else:
|
||||
last += vals[j] * roots_of_unity[(i*j)%L]
|
||||
o.append(last if type(last) == tuple else last % modulus)
|
||||
return o
|
||||
|
||||
def _fft(vals, modulus, roots_of_unity):
|
||||
if len(vals) <= 4 and type(vals[0]) != tuple:
|
||||
#return vals
|
||||
return _simple_ft(vals, modulus, roots_of_unity)
|
||||
elif len(vals) == 1 and type(vals[0]) == tuple:
|
||||
return vals
|
||||
L = _fft(vals[::2], modulus, roots_of_unity[::2])
|
||||
R = _fft(vals[1::2], modulus, roots_of_unity[::2])
|
||||
o = [0 for i in vals]
|
||||
for i, (x, y) in enumerate(zip(L, R)):
|
||||
y_times_root = b.multiply(y, roots_of_unity[i]) if type(y) == tuple else y*roots_of_unity[i]
|
||||
o[i] = b.add(x, y_times_root) if type(x) == tuple else (x+y_times_root) % modulus
|
||||
o[i+len(L)] = b.add(x, b.neg(y_times_root)) if type(x) == tuple else (x-y_times_root) % modulus
|
||||
return o
|
||||
|
||||
def expand_root_of_unity(root_of_unity, modulus):
|
||||
# Build up roots of unity
|
||||
rootz = [1, root_of_unity]
|
||||
while rootz[-1] != 1:
|
||||
rootz.append((rootz[-1] * root_of_unity) % modulus)
|
||||
return rootz
|
||||
|
||||
def fft(vals, modulus, root_of_unity, inv=False):
|
||||
rootz = expand_root_of_unity(root_of_unity, modulus)
|
||||
# Fill in vals with zeroes if needed
|
||||
if len(rootz) > len(vals) + 1:
|
||||
vals = vals + [0] * (len(rootz) - len(vals) - 1)
|
||||
if inv:
|
||||
# Inverse FFT
|
||||
invlen = pow(len(vals), modulus-2, modulus)
|
||||
if type(vals[0]) == tuple:
|
||||
return [b.multiply(x, invlen) for x in
|
||||
_fft(vals, modulus, rootz[:0:-1])]
|
||||
else:
|
||||
return [(x*invlen) % modulus for x in
|
||||
_fft(vals, modulus, rootz[:0:-1])]
|
||||
else:
|
||||
# Regular FFT
|
||||
return _fft(vals, modulus, rootz[:-1])
|
||||
|
||||
# Evaluates f(x) for f in evaluation form
|
||||
def inv_fft_at_point(vals, modulus, root_of_unity, x):
|
||||
if len(vals) == 1:
|
||||
return vals[0]
|
||||
# 1/2 in the field
|
||||
half = (modulus + 1)//2
|
||||
# 1/w
|
||||
inv_root = pow(root_of_unity, len(vals)-1, modulus)
|
||||
# f(-x) in evaluation form
|
||||
f_of_minus_x_vals = vals[len(vals)//2:] + vals[:len(vals)//2]
|
||||
# e(x) = (f(x) + f(-x)) / 2 in evaluation form
|
||||
evens = [(f+g) * half % modulus for f,g in zip(vals, f_of_minus_x_vals)]
|
||||
# o(x) = (f(x) - f(-x)) / 2 in evaluation form
|
||||
odds = [(f-g) * half % modulus for f,g in zip(vals, f_of_minus_x_vals)]
|
||||
# e(x^2) + coordinate * x * o(x^2) in evaluation form
|
||||
comb = [(o * x * inv_root**i + e) % modulus for i, (o, e) in enumerate(zip(odds, evens))]
|
||||
return inv_fft_at_point(comb[:len(comb)//2], modulus, root_of_unity ** 2 % modulus, x**2 % modulus)
|
||||
|
||||
def shift_domain(vals, modulus, root_of_unity, factor):
|
||||
if len(vals) == 1:
|
||||
return vals
|
||||
# 1/2 in the field
|
||||
half = (modulus + 1)//2
|
||||
# 1/w
|
||||
inv_factor = pow(factor, modulus - 2, modulus)
|
||||
half_length = len(vals)//2
|
||||
# f(-x) in evaluation form
|
||||
f_of_minus_x_vals = vals[half_length:] + vals[:half_length]
|
||||
# e(x) = (f(x) + f(-x)) / 2 in evaluation form
|
||||
evens = [(f+g) * half % modulus for f,g in zip(vals, f_of_minus_x_vals)]
|
||||
print('e', evens)
|
||||
# o(x) = (f(x) - f(-x)) / 2 in evaluation form
|
||||
odds = [(f-g) * half % modulus for f,g in zip(vals, f_of_minus_x_vals)]
|
||||
print('o', odds)
|
||||
shifted_evens = shift_domain(evens[:half_length], modulus, root_of_unity ** 2 % modulus, factor ** 2 % modulus)
|
||||
print('se', shifted_evens)
|
||||
shifted_odds = shift_domain(odds[:half_length], modulus, root_of_unity ** 2 % modulus, factor ** 2 % modulus)
|
||||
print('so', shifted_odds)
|
||||
return (
|
||||
[(e + inv_factor * o) % modulus for e, o in zip(shifted_evens, shifted_odds)] +
|
||||
[(e - inv_factor * o) % modulus for e, o in zip(shifted_evens, shifted_odds)]
|
||||
)
|
||||
|
||||
def shift_poly(poly, modulus, factor):
|
||||
factor_power = 1
|
||||
inv_factor = pow(factor, modulus - 2, modulus)
|
||||
o = []
|
||||
for p in poly:
|
||||
o.append(p * factor_power % modulus)
|
||||
factor_power = factor_power * inv_factor % modulus
|
||||
return o
|
||||
|
||||
def mul_polys(a, b, modulus, root_of_unity):
|
||||
rootz = [1, root_of_unity]
|
||||
while rootz[-1] != 1:
|
||||
rootz.append((rootz[-1] * root_of_unity) % modulus)
|
||||
if len(rootz) > len(a) + 1:
|
||||
a = a + [0] * (len(rootz) - len(a) - 1)
|
||||
if len(rootz) > len(b) + 1:
|
||||
b = b + [0] * (len(rootz) - len(b) - 1)
|
||||
x1 = _fft(a, modulus, rootz[:-1])
|
||||
x2 = _fft(b, modulus, rootz[:-1])
|
||||
return _fft([(v1*v2)%modulus for v1,v2 in zip(x1,x2)],
|
||||
modulus, rootz[:0:-1])
|
|
@ -0,0 +1,252 @@
|
|||
from py_ecc import optimized_bls12_381 as b
|
||||
from fft import fft
|
||||
from multicombs import lincomb
|
||||
|
||||
# Generatore for the field
|
||||
PRIMITIVE_ROOT = 7
|
||||
MODULUS = b.curve_order
|
||||
|
||||
assert pow(PRIMITIVE_ROOT, (MODULUS - 1) // 2, MODULUS) != 1
|
||||
assert pow(PRIMITIVE_ROOT, MODULUS - 1, MODULUS) == 1
|
||||
|
||||
#########################################################################################
|
||||
#
|
||||
# Helpers
|
||||
#
|
||||
#########################################################################################
|
||||
|
||||
def is_power_of_two(x):
|
||||
return x > 0 and x & (x-1) == 0
|
||||
|
||||
|
||||
def generate_setup(s, size):
|
||||
"""
|
||||
# Generate trusted setup, in coefficient form.
|
||||
# For data availability we always need to compute the polynomials anyway, so it makes little sense to do things in Lagrange space
|
||||
"""
|
||||
return (
|
||||
[b.multiply(b.G1, pow(s, i, MODULUS)) for i in range(size + 1)],
|
||||
[b.multiply(b.G2, pow(s, i, MODULUS)) for i in range(size + 1)],
|
||||
)
|
||||
|
||||
#########################################################################################
|
||||
#
|
||||
# Field operations
|
||||
#
|
||||
#########################################################################################
|
||||
|
||||
|
||||
def get_root_of_unity(order):
|
||||
"""
|
||||
Returns a root of unity of order "order"
|
||||
"""
|
||||
assert (MODULUS - 1) % order == 0
|
||||
return pow(PRIMITIVE_ROOT, (MODULUS - 1) // order, MODULUS)
|
||||
|
||||
def inv(a):
|
||||
"""
|
||||
Modular inverse using eGCD algorithm
|
||||
"""
|
||||
if a == 0:
|
||||
return 0
|
||||
lm, hm = 1, 0
|
||||
low, high = a % MODULUS, MODULUS
|
||||
while low > 1:
|
||||
r = high // low
|
||||
nm, new = hm - lm * r, high - low * r
|
||||
lm, low, hm, high = nm, new, lm, low
|
||||
return lm % MODULUS
|
||||
|
||||
def div(x, y):
|
||||
return x * inv(y) % MODULUS
|
||||
|
||||
#########################################################################################
|
||||
#
|
||||
# Polynomial operations
|
||||
#
|
||||
#########################################################################################
|
||||
|
||||
def eval_poly_at(p, x):
|
||||
"""
|
||||
Evaluate polynomial p (coefficient form) at point x
|
||||
"""
|
||||
y = 0
|
||||
power_of_x = 1
|
||||
for i, p_coeff in enumerate(p):
|
||||
y += power_of_x * p_coeff
|
||||
power_of_x = (power_of_x * x) % MODULUS
|
||||
return y % MODULUS
|
||||
|
||||
def div_polys(a, b):
|
||||
"""
|
||||
Long polynomial difivion for two polynomials in coefficient form
|
||||
"""
|
||||
a = [x for x in a]
|
||||
o = []
|
||||
apos = len(a) - 1
|
||||
bpos = len(b) - 1
|
||||
diff = apos - bpos
|
||||
while diff >= 0:
|
||||
quot = div(a[apos], b[bpos])
|
||||
o.insert(0, quot)
|
||||
for i in range(bpos, -1, -1):
|
||||
a[diff + i] -= b[i] * quot
|
||||
apos -= 1
|
||||
diff -= 1
|
||||
return [x % MODULUS for x in o]
|
||||
|
||||
#########################################################################################
|
||||
#
|
||||
# Utils for reverse bit order
|
||||
#
|
||||
#########################################################################################
|
||||
|
||||
|
||||
def reverse_bit_order(n, order):
|
||||
"""
|
||||
Reverse the bit order of an integer n
|
||||
"""
|
||||
assert is_power_of_two(order)
|
||||
# Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order
|
||||
return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2)
|
||||
|
||||
|
||||
def list_to_reverse_bit_order(l):
|
||||
"""
|
||||
Convert a list between normal and reverse bit order. This operation is idempotent.
|
||||
"""
|
||||
return [l[reverse_bit_order(i, len(l))] for i in range(len(l))]
|
||||
|
||||
|
||||
#########################################################################################
|
||||
#
|
||||
# Converting between polynomials (in coefficient form) and data (in reverse bit order)
|
||||
# and extending data
|
||||
#
|
||||
#########################################################################################
|
||||
|
||||
def get_polynomial(data):
|
||||
"""
|
||||
Interpolate a polynomial (coefficients) from data in reverse bit order
|
||||
"""
|
||||
assert is_power_of_two(len(data))
|
||||
root_of_unity = get_root_of_unity(len(data))
|
||||
return fft(list_to_reverse_bit_order(data), MODULUS, root_of_unity, True)
|
||||
|
||||
def get_data(polynomial):
|
||||
"""
|
||||
Get data (in reverse bit order) from polynomial in coefficient form
|
||||
"""
|
||||
assert is_power_of_two(len(polynomial))
|
||||
root_of_unity = get_root_of_unity(len(polynomial))
|
||||
return list_to_reverse_bit_order(fft(polynomial, MODULUS, root_of_unity, False))
|
||||
|
||||
def get_extended_data(polynomial):
|
||||
"""
|
||||
Get extended data (expanded by 2x, reverse bit order) from polynomial in coefficient form
|
||||
"""
|
||||
assert is_power_of_two(len(polynomial))
|
||||
extended_polynomial = polynomial + [0] * len(polynomial)
|
||||
root_of_unity = get_root_of_unity(len(extended_polynomial))
|
||||
return list_to_reverse_bit_order(fft(extended_polynomial, MODULUS, root_of_unity, False))
|
||||
|
||||
#########################################################################################
|
||||
#
|
||||
# Kate single proofs
|
||||
#
|
||||
#########################################################################################
|
||||
|
||||
def commit_to_poly(polynomial, setup):
|
||||
"""
|
||||
Kate commitment to polynomial in coefficient form
|
||||
"""
|
||||
return lincomb(setup[0][:len(polynomial)], polynomial, b.add, b.Z1)
|
||||
|
||||
def compute_proof_single(polynomial, x, setup):
|
||||
"""
|
||||
Compute Kate proof for polynomial in coefficient form at position x
|
||||
"""
|
||||
quotient_polynomial = div_polys(polynomial, [-x, 1])
|
||||
return lincomb(setup[0][:len(quotient_polynomial)], quotient_polynomial, b.add, b.Z1)
|
||||
|
||||
def check_proof_single(commitment, proof, x, y, setup):
|
||||
"""
|
||||
Check a proof for a Kate commitment for an evaluation f(x) = y
|
||||
"""
|
||||
# Verify the pairing equation
|
||||
#
|
||||
# e([commitment - y], [1]) = e([proof], [s - x])
|
||||
# equivalent to
|
||||
# e([commitment - y]^(-1), [1]) * e([proof], [s - x]) = 1_T
|
||||
#
|
||||
|
||||
s_minus_x = b.add(setup[1][1], b.multiply(b.neg(b.G2), x))
|
||||
commitment_minus_y = b.add(commitment, b.multiply(b.neg(b.G1), y))
|
||||
|
||||
pairing_check = b.pairing(b.G2, b.neg(commitment_minus_y), False)
|
||||
pairing_check *= b.pairing(s_minus_x, proof, False)
|
||||
pairing = b.final_exponentiate(pairing_check)
|
||||
|
||||
return pairing == b.FQ12.one()
|
||||
|
||||
#########################################################################################
|
||||
#
|
||||
# Kate multiproofs on a coset
|
||||
#
|
||||
#########################################################################################
|
||||
|
||||
def compute_proof_multi(polynomial, x, n, setup):
|
||||
"""
|
||||
Compute Kate proof for polynomial in coefficient form at positions x * w^y where w is
|
||||
an n-th root of unity (this is the proof for one data availability sample, which consists
|
||||
of several polynomial evaluations)
|
||||
"""
|
||||
quotient_polynomial = div_polys(polynomial, [-pow(x, n, MODULUS)] + [0] * (n - 1) + [1])
|
||||
return lincomb(setup[0][:len(quotient_polynomial)], quotient_polynomial, b.add, b.Z1)
|
||||
|
||||
def check_proof_multi(commitment, proof, x, ys, setup):
|
||||
"""
|
||||
Check a proof for a Kate commitment for an evaluation f(x w^i) = y_i
|
||||
"""
|
||||
n = len(ys)
|
||||
root_of_unity = get_root_of_unity(n)
|
||||
|
||||
# Interpolate at a coset. Note because it is a coset, not the subgroup, we have to multiply the
|
||||
# polynomial coefficients by x^i
|
||||
interpolation_polynomial = fft(ys, MODULUS, root_of_unity, True)
|
||||
interpolation_polynomial = [div(c, pow(x, i, MODULUS)) for i, c in enumerate(interpolation_polynomial)]
|
||||
|
||||
# Verify the pairing equation
|
||||
#
|
||||
# e([commitment - interpolation_polynomial(s)], [1]) = e([proof], [s^n - x^n])
|
||||
# equivalent to
|
||||
# e([commitment - interpolation_polynomial]^(-1), [1]) * e([proof], [s^n - x^n]) = 1_T
|
||||
#
|
||||
|
||||
xn_minus_yn = b.add(setup[1][n], b.multiply(b.neg(b.G2), pow(x, n, MODULUS)))
|
||||
commitment_minus_interpolation = b.add(commitment, b.neg(lincomb(
|
||||
setup[0][:len(interpolation_polynomial)], interpolation_polynomial, b.add, b.Z1)))
|
||||
pairing_check = b.pairing(b.G2, b.neg(commitment_minus_interpolation), False)
|
||||
pairing_check *= b.pairing(xn_minus_yn, proof, False)
|
||||
pairing = b.final_exponentiate(pairing_check)
|
||||
return pairing == b.FQ12.one()
|
||||
|
||||
if __name__ == "__main__":
|
||||
polynomial = [1, 2, 3, 4, 7, 7, 7, 7, 13, 13, 13, 13, 13, 13, 13, 13]
|
||||
n = len(polynomial)
|
||||
|
||||
setup = generate_setup(1927409816240961209460912649124, n)
|
||||
|
||||
commitment = commit_to_poly(polynomial, setup)
|
||||
proof = compute_proof_single(polynomial, 17, setup)
|
||||
value = eval_poly_at(polynomial, 17)
|
||||
assert check_proof_single(commitment, proof, 17, value, setup)
|
||||
print("Single point check passed")
|
||||
|
||||
root_of_unity = get_root_of_unity(8)
|
||||
x = 5431
|
||||
coset = [x * pow(root_of_unity, i, MODULUS) for i in range(8)]
|
||||
ys = [eval_poly_at(polynomial, z) for z in coset]
|
||||
proof = compute_proof_multi(polynomial, x, 8, setup)
|
||||
assert check_proof_multi(commitment, proof, x, ys, setup)
|
||||
print("Coset check passed")
|
|
@ -0,0 +1,131 @@
|
|||
import random, time, sys, math
|
||||
|
||||
# For each subset in `subsets` (provided as a list of indices into `numbers`),
|
||||
# compute the sum of that subset of `numbers`. More efficient than the naive method.
|
||||
def multisubset(numbers, subsets, adder=lambda x,y: x+y, zero=0):
|
||||
numbers = numbers[::]
|
||||
subsets = {i: {x for x in subset} for i, subset in enumerate(subsets)}
|
||||
output = [zero for _ in range(len(subsets))]
|
||||
|
||||
for roundcount in range(9999999):
|
||||
# Compute counts of every pair of indices in the subset list
|
||||
pair_count = {}
|
||||
for index, subset in subsets.items():
|
||||
for x in subset:
|
||||
for y in subset:
|
||||
if y > x:
|
||||
pair_count[(x, y)] = pair_count.get((x, y), 0) + 1
|
||||
|
||||
# Determine pairs with highest count. The cutoff parameter [:len(numbers)]
|
||||
# determines a tradeoff between group operation count and other forms of overhead
|
||||
pairs_by_count = sorted([el for el in pair_count.keys()], key=lambda el: pair_count[el], reverse=True)[:len(numbers)*int(math.log(len(numbers)))]
|
||||
|
||||
# Exit condition: all subsets have size 1, no pairs
|
||||
if len(pairs_by_count) == 0:
|
||||
for key, subset in subsets.items():
|
||||
for index in subset:
|
||||
output[key] = adder(output[key], numbers[index])
|
||||
return output
|
||||
|
||||
# In each of the highest-count pairs, take the sum of the numbers at those indices,
|
||||
# and add the result as a new value, and modify `subsets` to include the new value
|
||||
# wherever possible
|
||||
used = set()
|
||||
for maxx, maxy in pairs_by_count:
|
||||
if maxx in used or maxy in used:
|
||||
continue
|
||||
used.add(maxx)
|
||||
used.add(maxy)
|
||||
numbers.append(adder(numbers[maxx], numbers[maxy]))
|
||||
for key, subset in list(subsets.items()):
|
||||
if maxx in subset and maxy in subset:
|
||||
subset.remove(maxx)
|
||||
subset.remove(maxy)
|
||||
if not subset:
|
||||
output[key] = numbers[-1]
|
||||
del subsets[key]
|
||||
else:
|
||||
subset.add(len(numbers)-1)
|
||||
|
||||
# Alternative algorithm. Less optimal than the above, but much lower bit twiddling
|
||||
# overhead and much simpler.
|
||||
def multisubset2(numbers, subsets, adder=lambda x,y: x+y, zero=0):
|
||||
# Split up the numbers into partitions
|
||||
partition_size = 1 + int(math.log(len(subsets) + 1))
|
||||
# Align number count to partition size (for simplicity)
|
||||
numbers = numbers[::]
|
||||
while len(numbers) % partition_size != 0:
|
||||
numbers.append(zero)
|
||||
# Compute power set for each partition (eg. a, b, c -> {0, a, b, a+b, c, a+c, b+c, a+b+c})
|
||||
power_sets = []
|
||||
for i in range(0, len(numbers), partition_size):
|
||||
new_power_set = [zero]
|
||||
for dimension, value in enumerate(numbers[i:i+partition_size]):
|
||||
new_power_set += [adder(n, value) for n in new_power_set]
|
||||
power_sets.append(new_power_set)
|
||||
# Compute subset sums, using elements from power set for each range of values
|
||||
# ie. with a single power set lookup you can get the sum of _all_ elements in
|
||||
# the range partition_size*k...partition_size*(k+1) that are in that subset
|
||||
subset_sums = []
|
||||
for subset in subsets:
|
||||
o = zero
|
||||
for i in range(len(power_sets)):
|
||||
index_in_power_set = 0
|
||||
for j in range(partition_size):
|
||||
if i * partition_size + j in subset:
|
||||
index_in_power_set += 2 ** j
|
||||
o = adder(o, power_sets[i][index_in_power_set])
|
||||
subset_sums.append(o)
|
||||
return subset_sums
|
||||
|
||||
# Reduces a linear combination `numbers[0] * factors[0] + numbers[1] * factors[1] + ...`
|
||||
# into a multi-subset problem, and computes the result efficiently
|
||||
def lincomb(numbers, factors, adder=lambda x,y: x+y, zero=0):
|
||||
# Maximum bit length of a number; how many subsets we need to make
|
||||
maxbitlen = max((len(bin(f))-2 for f in factors), default=0)
|
||||
# Compute the subsets: the ith subset contains the numbers whose corresponding factor
|
||||
# has a 1 at the ith bit
|
||||
subsets = [{i for i in range(len(numbers)) if factors[i] & (1 << j)} for j in range(maxbitlen+1)]
|
||||
subset_sums = multisubset2(numbers, subsets, adder=adder, zero=zero)
|
||||
# For example, suppose a value V has factor 6 (011 in increasing-order binary). Subset 0
|
||||
# will not have V, subset 1 will, and subset 2 will. So if we multiply the output of adding
|
||||
# subset 0 with twice the output of adding subset 1, with four times the output of adding
|
||||
# subset 2, then V will be represented 0 + 2 + 4 = 6 times. This reasoning applies for every
|
||||
# value. So `subset_0_sum + 2 * subset_1_sum + 4 * subset_2_sum` gives us the result we want.
|
||||
# Here, we compute this as `((subset_2_sum * 2) + subset_1_sum) * 2 + subset_0_sum` for
|
||||
# efficiency: an extra `maxbitlen * 2` group operations.
|
||||
o = zero
|
||||
for i in range(len(subsets)-1, -1, -1):
|
||||
o = adder(adder(o, o), subset_sums[i])
|
||||
return o
|
||||
|
||||
# Tests go here
|
||||
def make_mock_adder():
|
||||
counter = [0]
|
||||
def adder(x, y):
|
||||
if x and y:
|
||||
counter[0] += 1
|
||||
return x+y
|
||||
return adder, counter
|
||||
|
||||
def test_multisubset(numcount, setcount):
|
||||
numbers = [random.randrange(10**20) for _ in range(numcount)]
|
||||
subsets = [{i for i in range(numcount) if random.randrange(2)} for i in range(setcount)]
|
||||
adder, counter = make_mock_adder()
|
||||
o = multisubset(numbers, subsets, adder=adder)
|
||||
for output, subset in zip(o, subsets):
|
||||
assert output == sum([numbers[x] for x in subset])
|
||||
|
||||
def test_lincomb(numcount, bitlength=256):
|
||||
numbers = [random.randrange(10**20) for _ in range(numcount)]
|
||||
factors = [random.randrange(2**bitlength) for _ in range(numcount)]
|
||||
adder, counter = make_mock_adder()
|
||||
o = lincomb(numbers, factors, adder=adder)
|
||||
assert o == sum([n*f for n,f in zip(numbers, factors)])
|
||||
total_ones = sum(bin(f).count('1') for f in factors)
|
||||
print("Naive operation count: %d" % (bitlength * numcount + total_ones))
|
||||
print("Optimized operation count: %d" % (bitlength * 2 + counter[0]))
|
||||
print("Optimization factor: %.2f" % ((bitlength * numcount + total_ones) / (bitlength * 2 + counter[0])))
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_lincomb(int(sys.argv[1]) if len(sys.argv) >= 2 else 80)
|
|
@ -0,0 +1,71 @@
|
|||
import atexit
|
||||
import ckzg
|
||||
import kzg_proofs
|
||||
import random
|
||||
from py_ecc import optimized_bls12_381 as b
|
||||
from py_ecc.bls.point_compression import compress_G1, decompress_G1, decompress_G2
|
||||
|
||||
|
||||
polynomial = [random.randint(0, kzg_proofs.MODULUS) for i in range(4096)]
|
||||
n = len(polynomial)
|
||||
|
||||
x = 9283547894352
|
||||
|
||||
y = kzg_proofs.eval_poly_at(polynomial, x)
|
||||
|
||||
root_of_unity = kzg_proofs.get_root_of_unity(n)
|
||||
roots_of_unity = [pow(root_of_unity, i, kzg_proofs.MODULUS) for i in range(n)]
|
||||
|
||||
polynomial_l = [kzg_proofs.eval_poly_at(polynomial, w) for w in roots_of_unity]
|
||||
|
||||
def evaluate_polynomial_in_evaluation_form(polynomial, z, roots_of_unity):
|
||||
|
||||
width = len(polynomial)
|
||||
inverse_width =kzg_proofs.inv(width)
|
||||
|
||||
# Make sure we won't divide by zero during division
|
||||
assert z not in roots_of_unity
|
||||
|
||||
result = 0
|
||||
for i in range(width):
|
||||
result += kzg_proofs.div(polynomial[i] * roots_of_unity[i], (z - roots_of_unity[i]))
|
||||
result = result * (pow(z, width, kzg_proofs.MODULUS) - 1) * inverse_width % kzg_proofs.MODULUS
|
||||
return result
|
||||
|
||||
y2 = evaluate_polynomial_in_evaluation_form(polynomial_l, x, roots_of_unity)
|
||||
|
||||
assert y == y2
|
||||
|
||||
polynomial_l_rbo = kzg_proofs.list_to_reverse_bit_order(polynomial_l)
|
||||
roots_of_unity_rbo = kzg_proofs.list_to_reverse_bit_order(roots_of_unity)
|
||||
|
||||
y3 = evaluate_polynomial_in_evaluation_form(polynomial_l_rbo, x, roots_of_unity_rbo)
|
||||
|
||||
assert y == y3
|
||||
|
||||
ts = ckzg.load_trusted_setup("../../src/trusted_setup.txt")
|
||||
ckzg_poly = ckzg.alloc_polynomial([ckzg.bytes_to_bls_field(r.to_bytes(32, "little")) for r in polynomial_l_rbo])
|
||||
ckzg_y4 = ckzg.evaluate_polynomial_in_evaluation_form(ckzg_poly, ckzg.bytes_to_bls_field(x.to_bytes(32, "little")), ts)
|
||||
y4 = ckzg.int_from_bls_field(ckzg_y4)
|
||||
|
||||
assert y == y4
|
||||
|
||||
def load_trusted_setup(filename):
|
||||
with open(filename, "r") as f:
|
||||
g1_length = int(f.readline())
|
||||
g2_length = int(f.readline())
|
||||
g1_setup = []
|
||||
g2_setup = []
|
||||
for i in range(g1_length):
|
||||
g1_setup.append(decompress_G1(int(f.readline(), 16)))
|
||||
#for i in range(g2_length):
|
||||
# l = f.readline()
|
||||
# g2_setup.append(decompress_G2((int(l[:48], 16), int(l[48:], 16))))
|
||||
return [g1_setup, g2_setup]
|
||||
|
||||
ts_pyecc = load_trusted_setup("../../src/trusted_setup.txt")
|
||||
|
||||
commitment_pyecc = kzg_proofs.commit_to_poly(polynomial, ts_pyecc)
|
||||
commitment_ckzg = ckzg.blob_to_kzg_commitment([ckzg.bytes_to_bls_field(r.to_bytes(32, "little")) for r in polynomial_l_rbo], ts)
|
||||
|
||||
assert compress_G1(commitment_pyecc).to_bytes(48, "big") == ckzg.bytes_from_g1(commitment_ckzg)
|
Loading…
Reference in New Issue