Fix eval_poly_l for evaluation at a root

Move the TODO for the special formula to compute_proof_single_l
This commit is contained in:
Ramana Kumar 2022-09-17 10:49:04 +01:00
parent f2454c284c
commit 10bff7d5c8
No known key found for this signature in database
GPG Key ID: ED471C788B900433
2 changed files with 40 additions and 2 deletions

View File

@ -92,6 +92,7 @@ C_KZG_RET check_proof_single(bool *out, const g1_t *commitment, const g1_t *proo
}
// TODO: I don't think this should compute the evaluation. Instead y should be a parameter
// TODO: Consider the case where x is one of the roots of unity (needs special formula)
C_KZG_RET compute_proof_single_l(g1_t *out, const poly_l *p, const fr_t *x0, const KZGSettings *ks) {
fr_t y, tmp, tmp2;
poly_l q;
@ -550,9 +551,44 @@ void poly_eval_l_check(void) {
free_poly_l(&p_l);
}
void eval_poly_l_at_first_root_of_unity(void) {
uint64_t n = 10;
fr_t actual, expected;
poly p;
new_poly(&p, n);
for (uint64_t i = 0; i < n; i++) {
fr_from_uint64(&p.coeffs[i], i + 2);
}
poly_l p_l;
FFTSettings fs;
KZGSettings ks;
uint64_t secrets_len = 16;
g1_t s1[secrets_len];
g2_t s2[secrets_len];
generate_trusted_setup(s1, s2, &secret, secrets_len);
TEST_CHECK(C_KZG_OK == new_fft_settings(&fs, 4)); // log_2(secrets_len)
TEST_CHECK(C_KZG_OK == new_kzg_settings(&ks, s1, s2, secrets_len, &fs));
eval_poly(&expected, &p, &fs.expanded_roots_of_unity[0]);
TEST_CHECK(C_KZG_OK == new_poly_l_from_poly(&p_l, &p, &ks));
eval_poly_l(&actual, &p_l, &fs.expanded_roots_of_unity[0], &fs);
TEST_CHECK(fr_equal(&expected, &actual));
free_fft_settings(&fs);
free_kzg_settings(&ks);
free_poly(&p);
free_poly_l(&p_l);
}
TEST_LIST = {
{"KZG_PROOFS_TEST", title},
{"poly_eval_l_check", poly_eval_l_check},
{"eval_poly_l_at_first_root_of_unity", eval_poly_l_at_first_root_of_unity},
{"proof_single", proof_single},
{"proof_multi", proof_multi},
{"commit_to_nil_poly", commit_to_nil_poly},

View File

@ -103,8 +103,6 @@ void eval_poly(fr_t *out, const poly *p, const fr_t *x) {
}
// TODO: optimize via batch inversion
// TODO: Consider the case where x is one of the roots of unity
// (needs special formula)
void eval_poly_l(fr_t *out, const poly_l *p, const fr_t *x, const FFTSettings *fs) {
fr_t tmp;
uint64_t i;
@ -112,6 +110,10 @@ void eval_poly_l(fr_t *out, const poly_l *p, const fr_t *x, const FFTSettings *f
*out = fr_zero;
for (i = 0; i < p->length; i++) {
if (fr_equal(x, &fs->expanded_roots_of_unity[i * stride])) {
*out = p->values[i];
return;
}
fr_sub(&tmp, x, &fs->expanded_roots_of_unity[i * stride]);
fr_inv(&tmp, &tmp);
fr_mul(&tmp, &tmp, &fs->expanded_roots_of_unity[i * stride]);