mirror of
https://github.com/status-im/c-kzg-4844.git
synced 2025-01-23 00:18:54 +00:00
121 lines
4.8 KiB
Python
121 lines
4.8 KiB
Python
|
|
||
|
from py_ecc import optimized_bls12_381 as b
|
||
|
|
||
|
def _simple_ft(vals, modulus, roots_of_unity):
|
||
|
L = len(roots_of_unity)
|
||
|
o = []
|
||
|
for i in range(L):
|
||
|
last = b.Z1 if type(vals[0]) == tuple else 0
|
||
|
for j in range(L):
|
||
|
if type(vals[0]) == tuple:
|
||
|
last = b.add(last, b.multiply(vals[j], roots_of_unity[(i*j)%L]))
|
||
|
else:
|
||
|
last += vals[j] * roots_of_unity[(i*j)%L]
|
||
|
o.append(last if type(last) == tuple else last % modulus)
|
||
|
return o
|
||
|
|
||
|
def _fft(vals, modulus, roots_of_unity):
|
||
|
if len(vals) <= 4 and type(vals[0]) != tuple:
|
||
|
#return vals
|
||
|
return _simple_ft(vals, modulus, roots_of_unity)
|
||
|
elif len(vals) == 1 and type(vals[0]) == tuple:
|
||
|
return vals
|
||
|
L = _fft(vals[::2], modulus, roots_of_unity[::2])
|
||
|
R = _fft(vals[1::2], modulus, roots_of_unity[::2])
|
||
|
o = [0 for i in vals]
|
||
|
for i, (x, y) in enumerate(zip(L, R)):
|
||
|
y_times_root = b.multiply(y, roots_of_unity[i]) if type(y) == tuple else y*roots_of_unity[i]
|
||
|
o[i] = b.add(x, y_times_root) if type(x) == tuple else (x+y_times_root) % modulus
|
||
|
o[i+len(L)] = b.add(x, b.neg(y_times_root)) if type(x) == tuple else (x-y_times_root) % modulus
|
||
|
return o
|
||
|
|
||
|
def expand_root_of_unity(root_of_unity, modulus):
|
||
|
# Build up roots of unity
|
||
|
rootz = [1, root_of_unity]
|
||
|
while rootz[-1] != 1:
|
||
|
rootz.append((rootz[-1] * root_of_unity) % modulus)
|
||
|
return rootz
|
||
|
|
||
|
def fft(vals, modulus, root_of_unity, inv=False):
|
||
|
rootz = expand_root_of_unity(root_of_unity, modulus)
|
||
|
# Fill in vals with zeroes if needed
|
||
|
if len(rootz) > len(vals) + 1:
|
||
|
vals = vals + [0] * (len(rootz) - len(vals) - 1)
|
||
|
if inv:
|
||
|
# Inverse FFT
|
||
|
invlen = pow(len(vals), modulus-2, modulus)
|
||
|
if type(vals[0]) == tuple:
|
||
|
return [b.multiply(x, invlen) for x in
|
||
|
_fft(vals, modulus, rootz[:0:-1])]
|
||
|
else:
|
||
|
return [(x*invlen) % modulus for x in
|
||
|
_fft(vals, modulus, rootz[:0:-1])]
|
||
|
else:
|
||
|
# Regular FFT
|
||
|
return _fft(vals, modulus, rootz[:-1])
|
||
|
|
||
|
# Evaluates f(x) for f in evaluation form
|
||
|
def inv_fft_at_point(vals, modulus, root_of_unity, x):
|
||
|
if len(vals) == 1:
|
||
|
return vals[0]
|
||
|
# 1/2 in the field
|
||
|
half = (modulus + 1)//2
|
||
|
# 1/w
|
||
|
inv_root = pow(root_of_unity, len(vals)-1, modulus)
|
||
|
# f(-x) in evaluation form
|
||
|
f_of_minus_x_vals = vals[len(vals)//2:] + vals[:len(vals)//2]
|
||
|
# e(x) = (f(x) + f(-x)) / 2 in evaluation form
|
||
|
evens = [(f+g) * half % modulus for f,g in zip(vals, f_of_minus_x_vals)]
|
||
|
# o(x) = (f(x) - f(-x)) / 2 in evaluation form
|
||
|
odds = [(f-g) * half % modulus for f,g in zip(vals, f_of_minus_x_vals)]
|
||
|
# e(x^2) + coordinate * x * o(x^2) in evaluation form
|
||
|
comb = [(o * x * inv_root**i + e) % modulus for i, (o, e) in enumerate(zip(odds, evens))]
|
||
|
return inv_fft_at_point(comb[:len(comb)//2], modulus, root_of_unity ** 2 % modulus, x**2 % modulus)
|
||
|
|
||
|
def shift_domain(vals, modulus, root_of_unity, factor):
|
||
|
if len(vals) == 1:
|
||
|
return vals
|
||
|
# 1/2 in the field
|
||
|
half = (modulus + 1)//2
|
||
|
# 1/w
|
||
|
inv_factor = pow(factor, modulus - 2, modulus)
|
||
|
half_length = len(vals)//2
|
||
|
# f(-x) in evaluation form
|
||
|
f_of_minus_x_vals = vals[half_length:] + vals[:half_length]
|
||
|
# e(x) = (f(x) + f(-x)) / 2 in evaluation form
|
||
|
evens = [(f+g) * half % modulus for f,g in zip(vals, f_of_minus_x_vals)]
|
||
|
print('e', evens)
|
||
|
# o(x) = (f(x) - f(-x)) / 2 in evaluation form
|
||
|
odds = [(f-g) * half % modulus for f,g in zip(vals, f_of_minus_x_vals)]
|
||
|
print('o', odds)
|
||
|
shifted_evens = shift_domain(evens[:half_length], modulus, root_of_unity ** 2 % modulus, factor ** 2 % modulus)
|
||
|
print('se', shifted_evens)
|
||
|
shifted_odds = shift_domain(odds[:half_length], modulus, root_of_unity ** 2 % modulus, factor ** 2 % modulus)
|
||
|
print('so', shifted_odds)
|
||
|
return (
|
||
|
[(e + inv_factor * o) % modulus for e, o in zip(shifted_evens, shifted_odds)] +
|
||
|
[(e - inv_factor * o) % modulus for e, o in zip(shifted_evens, shifted_odds)]
|
||
|
)
|
||
|
|
||
|
def shift_poly(poly, modulus, factor):
|
||
|
factor_power = 1
|
||
|
inv_factor = pow(factor, modulus - 2, modulus)
|
||
|
o = []
|
||
|
for p in poly:
|
||
|
o.append(p * factor_power % modulus)
|
||
|
factor_power = factor_power * inv_factor % modulus
|
||
|
return o
|
||
|
|
||
|
def mul_polys(a, b, modulus, root_of_unity):
|
||
|
rootz = [1, root_of_unity]
|
||
|
while rootz[-1] != 1:
|
||
|
rootz.append((rootz[-1] * root_of_unity) % modulus)
|
||
|
if len(rootz) > len(a) + 1:
|
||
|
a = a + [0] * (len(rootz) - len(a) - 1)
|
||
|
if len(rootz) > len(b) + 1:
|
||
|
b = b + [0] * (len(rootz) - len(b) - 1)
|
||
|
x1 = _fft(a, modulus, rootz[:-1])
|
||
|
x2 = _fft(b, modulus, rootz[:-1])
|
||
|
return _fft([(v1*v2)%modulus for v1,v2 in zip(x1,x2)],
|
||
|
modulus, rootz[:0:-1])
|