c-kzg-4844/src/fk20_proofs.c

548 lines
18 KiB
C
Raw Normal View History

2021-02-10 11:55:38 +00:00
/*
* Copyright 2021 Benjamin Edgington
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
2021-02-12 16:49:31 +00:00
/**
* @file fk20_proofs.c
*
* Implements amortised KZG proofs as per the [FK20
* paper](https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf).
2021-02-15 20:48:16 +00:00
*
* @todo Split this out into smaller files.
2021-02-12 16:49:31 +00:00
*/
2021-02-10 11:55:38 +00:00
#include <string.h> // memcpy()
#include "fk20_proofs.h"
#include "fft_g1.h"
#include "c_kzg_util.h"
2021-02-12 16:49:31 +00:00
/**
* Calculate log base two of a power of two.
*
* In other words, the bit index of the one bit.
*
* @remark Works only for n a power of two, and only for n up to 2^31.
*
* @param[in] n The power of two
* @return the log base two of n
*/
2021-02-10 11:55:38 +00:00
int log2_pow2(uint32_t n) {
const uint32_t b[] = {0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000};
register uint32_t r;
r = (n & b[0]) != 0;
r |= ((n & b[1]) != 0) << 1;
r |= ((n & b[2]) != 0) << 2;
r |= ((n & b[3]) != 0) << 3;
r |= ((n & b[4]) != 0) << 4;
return r;
}
2021-02-12 16:49:31 +00:00
/**
* Reverse the bit order in a 32 bit integer.
*
* @remark This simply wraps the macro to enforce the type check.
*
* @param[in] a The integer to be reversed
* @return An integer with the bits of @p a reversed
*/
2021-02-10 11:55:38 +00:00
uint32_t reverse_bits(uint32_t a) {
return rev_4byte(a);
}
2021-02-12 16:49:31 +00:00
/**
* Reverse the low-order bits in a 32 bit integer.
*
* The lowest log_base_two(@p n) bits of @p value are returned reversed. @p n must be a power of two.
*
* @param[in] n To reverse `b` bits, set `n = 2 ^ b`
* @param[in] value The bits to be reversed
* @return The reversal of the lowest log_2(@p n) bits of the input @p value
*/
uint32_t reverse_bits_limited(uint32_t n, uint32_t value) {
int unused_bit_len = 32 - log2_pow2(n);
2021-02-10 11:55:38 +00:00
return reverse_bits(value) >> unused_bit_len;
}
2021-02-12 16:49:31 +00:00
/**
* Reorder an array in reverse bit order of its indices.
*
* @remark Operates in-place on the array.
* @remark Can handle arrays of any type: provide the element size in @p size.
*
* @param[in,out] values The array, which is re-ordered in-place
* @param[in] size The size in bytes of an element of the array
* @param[in] n The length of the array, must be a power of two less that 2^32
* @retval C_CZK_OK All is well
* @retval C_CZK_BADARGS Invalid parameters were supplied
*/
2021-02-10 11:55:38 +00:00
C_KZG_RET reverse_bit_order(void *values, size_t size, uint64_t n) {
ASSERT(n >> 32 == 0, C_KZG_BADARGS);
ASSERT(is_power_of_two(n), C_KZG_BADARGS);
byte tmp[size];
int unused_bit_len = 32 - log2_pow2(n);
for (uint32_t i = 0; i < n; i++) {
uint32_t r = reverse_bits(i) >> unused_bit_len;
if (r > i) {
// Swap the two elements
memcpy(tmp, values + (i * size), size);
memcpy(values + (i * size), values + (r * size), size);
memcpy(values + (r * size), tmp, size);
}
}
return C_KZG_OK;
}
2021-02-12 16:49:31 +00:00
/**
* The first part of the Toeplitz matrix multiplication algorithm: the Fourier
* transform of the vector @p x extended.
*
* @param[out] out The FFT of the extension of @p x, size @p n * 2
* @param[in] x The input vector, size @p n
* @param[in] n The length of the input vector @p x
* @param[in] fs The FFT settings previously initialised with #new_fft_settings
* @retval C_CZK_OK All is well
* @retval C_CZK_ERROR An internal error occurred
* @retval C_CZK_MALLOC Memory allocation failed
*/
C_KZG_RET toeplitz_part_1(blst_p1 *out, const blst_p1 *x, uint64_t n, const FFTSettings *fs) {
2021-02-10 11:55:38 +00:00
uint64_t n2 = n * 2;
2021-02-13 10:27:36 +00:00
blst_p1 *x_ext;
2021-02-10 11:55:38 +00:00
2021-02-15 20:48:16 +00:00
TRY(new_p1(&x_ext, n2));
2021-02-10 11:55:38 +00:00
for (uint64_t i = 0; i < n; i++) {
x_ext[i] = x[i];
}
for (uint64_t i = n; i < n2; i++) {
2021-02-13 10:27:36 +00:00
x_ext[i] = g1_identity;
2021-02-10 11:55:38 +00:00
}
TRY(fft_g1(out, x_ext, false, n2, fs));
2021-02-10 11:55:38 +00:00
free(x_ext);
return C_KZG_OK;
}
2021-02-12 16:49:31 +00:00
/**
* The second part of the Toeplitz matrix multiplication algorithm.
*
* @param[out] out Array of G1 group elements, length `n`
* @param[in] toeplitz_coeffs Toeplitz coefficients, a polynomial length `n`
2021-02-15 20:48:16 +00:00
* @param[in] x_ext_fft The Fourier transform of the extended `x` vector, length `n`
* @param[in] fs The FFT settings previously initialised with #new_fft_settings
2021-02-12 16:49:31 +00:00
* @retval C_CZK_OK All is well
* @retval C_CZK_BADARGS Invalid parameters were supplied
* @retval C_CZK_ERROR An internal error occurred
* @retval C_CZK_MALLOC Memory allocation failed
*/
2021-02-15 20:48:16 +00:00
C_KZG_RET toeplitz_part_2(blst_p1 *out, const poly *toeplitz_coeffs, const blst_p1 *x_ext_fft, const FFTSettings *fs) {
2021-02-10 11:55:38 +00:00
blst_fr *toeplitz_coeffs_fft;
2021-02-15 20:48:16 +00:00
// ASSERT(toeplitz_coeffs->length == fk->x_ext_fft_len, C_KZG_BADARGS); // TODO: how to implement?
2021-02-10 11:55:38 +00:00
2021-02-15 20:48:16 +00:00
TRY(new_fr(&toeplitz_coeffs_fft, toeplitz_coeffs->length));
TRY(fft_fr(toeplitz_coeffs_fft, toeplitz_coeffs->coeffs, false, toeplitz_coeffs->length, fs));
2021-02-10 11:55:38 +00:00
for (uint64_t i = 0; i < toeplitz_coeffs->length; i++) {
2021-02-15 20:48:16 +00:00
p1_mul(&out[i], &x_ext_fft[i], &toeplitz_coeffs_fft[i]);
2021-02-10 11:55:38 +00:00
}
2021-02-15 20:48:16 +00:00
free(toeplitz_coeffs_fft);
2021-02-10 11:55:38 +00:00
return C_KZG_OK;
}
2021-02-12 16:49:31 +00:00
/**
* The third part of the Toeplitz matrix multiplication algorithm: transform back and zero the top half.
*
* @param[out] out Array of G1 group elements, length @p n2
* @param[in] h_ext_fft FFT of the extended `h` values, length @p n2
* @param[in] n2 Size of the arrays
2021-02-15 20:48:16 +00:00
* @param[in] fs The FFT settings previously initialised with #new_fft_settings
2021-02-12 16:49:31 +00:00
* @retval C_CZK_OK All is well
* @retval C_CZK_ERROR An internal error occurred
*/
2021-02-15 20:48:16 +00:00
C_KZG_RET toeplitz_part_3(blst_p1 *out, const blst_p1 *h_ext_fft, uint64_t n2, const FFTSettings *fs) {
uint64_t n = n2 / 2;
2021-02-15 20:48:16 +00:00
TRY(fft_g1(out, h_ext_fft, true, n2, fs));
// Zero the second half of h
for (uint64_t i = n; i < n2; i++) {
2021-02-13 10:27:36 +00:00
out[i] = g1_identity;
}
2021-02-10 11:55:38 +00:00
return C_KZG_OK;
}
/**
2021-02-15 20:48:16 +00:00
* Reorder and extend polynomial coefficients for the toeplitz method, strided version.
*
2021-02-15 20:48:16 +00:00
* @remark The upper half of the input polynomial coefficients is treated as being zero.
2021-02-12 16:49:31 +00:00
*
2021-02-15 20:48:16 +00:00
* @param[out] out The reordered polynomial, size `n * 2 / stride`
2021-02-12 16:49:31 +00:00
* @param[in] in The input polynomial, size `n`
2021-02-15 20:48:16 +00:00
* @param[in] offset The offset
* @param[in] stride The stride
2021-02-12 16:49:31 +00:00
* @retval C_CZK_OK All is well
2021-02-15 20:48:16 +00:00
* @retval C_CZK_BADARGS Invalid parameters were supplied
2021-02-12 16:49:31 +00:00
* @retval C_CZK_MALLOC Memory allocation failed
*/
2021-02-15 20:48:16 +00:00
C_KZG_RET toeplitz_coeffs_stride(poly *out, const poly *in, uint64_t offset, uint64_t stride) {
uint64_t n = in->length, k, k2;
ASSERT(stride > 0, C_KZG_BADARGS);
2021-02-10 11:55:38 +00:00
2021-02-15 20:48:16 +00:00
k = n / stride;
k2 = k * 2;
2021-02-12 16:49:31 +00:00
2021-02-15 20:48:16 +00:00
out->coeffs[0] = in->coeffs[n - 1 - offset];
for (uint64_t i = 1; i <= k + 1; i++) {
2021-02-10 11:55:38 +00:00
out->coeffs[i] = fr_zero;
}
2021-02-15 20:48:16 +00:00
for (uint64_t i = k + 2, j = 2 * stride - offset - 1; i < k2; i++, j += stride) {
out->coeffs[i] = in->coeffs[j];
2021-02-10 11:55:38 +00:00
}
2021-02-12 16:49:31 +00:00
return C_KZG_OK;
2021-02-10 11:55:38 +00:00
}
/**
2021-02-15 20:48:16 +00:00
* Reorder and extend polynomial coefficients for the toeplitz method.
*
* @remark The upper half of the input polynomial coefficients is treated as being zero.
*
2021-02-15 20:48:16 +00:00
* @param[out] out The reordered polynomial, size `n * 2`
* @param[in] in The input polynomial, size `n`
* @retval C_CZK_OK All is well
* @retval C_CZK_MALLOC Memory allocation failed
*/
2021-02-15 20:48:16 +00:00
C_KZG_RET toeplitz_coeffs_step(poly *out, const poly *in) {
return toeplitz_coeffs_stride(out, in, 0, 1);
}
2021-02-12 16:49:31 +00:00
/**
* Optimised version of the FK20 algorithm for use in data availability checks.
*
2021-02-12 19:49:43 +00:00
* Simultaneously calculates all the KZG proofs for `x_i = w^i` (`0 <= i < 2n`), where `w` is a `(2 * n)`th root of
* unity. The `2n` comes from the polynomial being extended with zeros to twice the original size.
*
* `out[i]` is the proof for `y[i]`, the evaluation of the polynomial at `fs.expanded_roots_of_unity[i]`.
*
2021-02-15 20:48:16 +00:00
* @remark Only the lower half of the polynomial is supplied; the upper, zero, half is assumed. The
* #toeplitz_coeffs_step routine does the right thing.
*
2021-02-12 16:49:31 +00:00
* @param[out] out Array size `n * 2`
* @param[in] p Polynomial, size `n`
* @param[in] fk FK20 single settings previously initialised by #new_fk20_single_settings
* @retval C_CZK_OK All is well
* @retval C_CZK_BADARGS Invalid parameters were supplied
* @retval C_CZK_ERROR An internal error occurred
* @retval C_CZK_MALLOC Memory allocation failed
*/
2021-02-13 10:27:36 +00:00
C_KZG_RET fk20_single_da_opt(blst_p1 *out, const poly *p, const FK20SingleSettings *fk) {
uint64_t n = p->length, n2 = n * 2;
blst_p1 *h, *h_ext_fft;
poly toeplitz_coeffs;
2021-02-10 11:55:38 +00:00
ASSERT(n2 <= fk->ks->fs->max_width, C_KZG_BADARGS);
ASSERT(is_power_of_two(n), C_KZG_BADARGS);
2021-02-10 11:55:38 +00:00
2021-02-15 20:48:16 +00:00
TRY(new_poly(&toeplitz_coeffs, 2 * p->length));
TRY(toeplitz_coeffs_step(&toeplitz_coeffs, p));
TRY(new_p1(&h_ext_fft, toeplitz_coeffs.length));
TRY(toeplitz_part_2(h_ext_fft, &toeplitz_coeffs, fk->x_ext_fft, fk->ks->fs));
TRY(new_p1(&h, n2));
TRY(toeplitz_part_3(h, h_ext_fft, n2, fk->ks->fs));
TRY(fft_g1(out, h, false, n2, fk->ks->fs));
2021-02-10 11:55:38 +00:00
2021-02-15 20:48:16 +00:00
free_poly(&toeplitz_coeffs);
free(h_ext_fft);
free(h);
2021-02-10 11:55:38 +00:00
return C_KZG_OK;
}
2021-02-12 16:49:31 +00:00
/**
2021-02-12 19:49:43 +00:00
* Data availability using the FK20 single algorithm.
2021-02-12 16:49:31 +00:00
*
2021-02-12 19:49:43 +00:00
* Simultaneously calculates all the KZG proofs for `x_i = w^i` (`0 <= i < 2n`), where `w` is a `(2 * n)`th root of
* unity. The `2n` comes from the polynomial being extended with zeros to twice the original size.
*
* `out[reverse_bits_limited(2 * n, i)]` is the proof for `y[i]`, the evaluation of the polynomial at
* `fs.expanded_roots_of_unity[i]`.
*
* @param[out] out All the proofs, array length 2 * `n`
2021-02-12 16:49:31 +00:00
* @param[in] p Polynomial, size `n`
* @param[in] fk FK20 single settings previously initialised by #new_fk20_single_settings
* @retval C_CZK_OK All is well
* @retval C_CZK_BADARGS Invalid parameters were supplied
* @retval C_CZK_ERROR An internal error occurred
*/
2021-02-13 10:27:36 +00:00
C_KZG_RET da_using_fk20_single(blst_p1 *out, const poly *p, const FK20SingleSettings *fk) {
2021-02-10 11:55:38 +00:00
uint64_t n = p->length, n2 = n * 2;
ASSERT(n2 <= fk->ks->fs->max_width, C_KZG_BADARGS);
ASSERT(is_power_of_two(n), C_KZG_BADARGS);
TRY(fk20_single_da_opt(out, p, fk));
TRY(reverse_bit_order(out, sizeof out[0], n2));
2021-02-10 11:55:38 +00:00
return C_KZG_OK;
}
2021-02-13 10:27:36 +00:00
/**
* FK20 Method to compute all proofs - multi proof method
*
* Toeplitz multiplication as per http://www.netlib.org/utk/people/JackDongarra/etemplates/node384.html
*
* For a polynomial of size `n`, let `w` be a `n`th root of unity. Then this method will return
* `k = n / l` KZG proofs for the points:
*
* ```
* proof[0]: w^(0*l + 0), w^(0*l + 1), ... w^(0*l + l - 1)
* proof[1]: w^(1*l + 0), w^(1*l + 1), ... w^(1*l + l - 1)
* ...
* proof[i]: w^(i*l + 0), w^(i*l + 1), ... w^(i*l + l - 1)
* ```
2021-02-15 20:48:16 +00:00
*
* @param[out] out The proofs, array size @p p->length * 2
* @param[in] p The polynomial
* @param[in] fk FK20 multi settings previously initialised by #new_fk20_multi_settings
2021-02-13 10:27:36 +00:00
*/
2021-02-15 20:48:16 +00:00
C_KZG_RET fk20_compute_proof_multi(blst_p1 *out, const poly *p, const FK20MultiSettings *fk) {
uint64_t n = p->length, n2 = n * 2;
blst_p1 *h_ext_fft, *h_ext_fft_file, *h;
poly toeplitz_coeffs;
ASSERT(fk->ks->fs->max_width >= n2, C_KZG_BADARGS);
TRY(new_p1(&h_ext_fft, n2));
for (uint64_t i = 0; i < n2; i++) {
h_ext_fft[i] = g1_identity;
}
TRY(new_poly(&toeplitz_coeffs, 2 * p->length));
TRY(new_p1(&h_ext_fft_file, toeplitz_coeffs.length));
for (uint64_t i = 0; i < fk->chunk_len; i++) {
TRY(toeplitz_coeffs_step(&toeplitz_coeffs, p));
TRY(toeplitz_part_2(h_ext_fft_file, &toeplitz_coeffs, fk->x_ext_fft_files[i], fk->ks->fs));
for (uint64_t j = 0; j < n2; j++) {
blst_p1_add(&h_ext_fft[j], &h_ext_fft[j], &h_ext_fft_file[j]);
}
}
free_poly(&toeplitz_coeffs);
free(h_ext_fft_file);
TRY(new_p1(&h, n2));
TRY(toeplitz_part_3(h, h_ext_fft, n2, fk->ks->fs));
TRY(fft_g1(out, h, false, n2, fk->ks->fs));
free(h_ext_fft);
free(h);
return C_KZG_OK;
}
/**
* FK20 multi-proof method, optimized for data availability where the top half of polynomial
* coefficients is zero.
*
* @remark Only the lower half of the polynomial is supplied; the upper, zero, half is assumed. The
* #toeplitz_coeffs_stride routine does the right thing.
*
* @param[out] out The proofs, array size `2 * n / fk->chunk_length`
* @param[in] p The polynomial, length `n`
* @param[in] fk FK20 multi settings previously initialised by #new_fk20_multi_settings
*/
C_KZG_RET fk20_multi_da_opt(blst_p1 *out, const poly *p, const FK20MultiSettings *fk) {
uint64_t n = p->length, n2 = n * 2, k, k2;
blst_p1 *h_ext_fft, *h_ext_fft_file, *h;
poly toeplitz_coeffs;
ASSERT(n2 <= fk->ks->fs->max_width, C_KZG_BADARGS);
ASSERT(is_power_of_two(n), C_KZG_BADARGS);
n = n2 / 2;
k = n / fk->chunk_len;
k2 = k * 2;
TRY(new_p1(&h_ext_fft, k2));
for (uint64_t i = 0; i < k2; i++) {
h_ext_fft[i] = g1_identity;
}
TRY(new_poly(&toeplitz_coeffs, n2 / fk->chunk_len));
TRY(new_p1(&h_ext_fft_file, toeplitz_coeffs.length));
for (uint64_t i = 0; i < fk->chunk_len; i++) {
TRY(toeplitz_coeffs_stride(&toeplitz_coeffs, p, i, fk->chunk_len));
TRY(toeplitz_part_2(h_ext_fft_file, &toeplitz_coeffs, fk->x_ext_fft_files[i], fk->ks->fs));
for (uint64_t j = 0; j < k2; j++) {
blst_p1_add(&h_ext_fft[j], &h_ext_fft[j], &h_ext_fft_file[j]);
}
}
free_poly(&toeplitz_coeffs);
free(h_ext_fft_file);
// Calculate `h`
TRY(new_p1(&h, k2));
TRY(toeplitz_part_3(h, h_ext_fft, k2, fk->ks->fs));
// Overwrite the second half of `h` with zero
for (uint64_t i = k; i < k2; i++) {
h[i] = g1_identity;
}
TRY(fft_g1(out, h, false, k2, fk->ks->fs));
free(h_ext_fft);
free(h);
return C_KZG_OK;
}
/**
* Computes all the KZG proofs for data availability checks.
*
* This involves sampling on the double domain and reordering according to reverse bit order.
*
*/
C_KZG_RET da_using_fk20_multi(blst_p1 *out, const poly *p, const FK20MultiSettings *fk) {
uint64_t n = p->length, n2 = n * 2;
ASSERT(n2 <= fk->ks->fs->max_width, C_KZG_BADARGS);
ASSERT(is_power_of_two(n), C_KZG_BADARGS);
TRY(fk20_multi_da_opt(out, p, fk));
TRY(reverse_bit_order(out, sizeof out[0], n2 / fk->chunk_len));
return C_KZG_OK;
}
2021-02-13 10:27:36 +00:00
2021-02-11 08:21:13 +00:00
/**
* Initialise settings for an FK20 single proof.
*
2021-02-15 20:48:16 +00:00
* @remark As with all functions prefixed `new_`, this allocates memory that needs to be reclaimed by calling
* the corresponding `free_` function. In this case, #free_fk20_single_settings.
2021-02-11 08:21:13 +00:00
*
2021-02-12 16:49:31 +00:00
* @param[out] fk The initialised settings
* @param[in] n2 The desired size of `x_ext_fft`, a power of two
* @param[in] ks KZGSettings that have already been initialised
* @retval C_CZK_OK All is well
* @retval C_CZK_BADARGS Invalid parameters were supplied
* @retval C_CZK_ERROR An internal error occurred
* @retval C_CZK_MALLOC Memory allocation failed
2021-02-11 08:21:13 +00:00
*/
2021-02-12 16:49:31 +00:00
C_KZG_RET new_fk20_single_settings(FK20SingleSettings *fk, uint64_t n2, const KZGSettings *ks) {
2021-02-10 11:55:38 +00:00
int n = n2 / 2;
blst_p1 *x;
ASSERT(n2 <= ks->fs->max_width, C_KZG_BADARGS);
ASSERT(is_power_of_two(n2), C_KZG_BADARGS);
ASSERT(n2 >= 2, C_KZG_BADARGS);
fk->ks = ks;
fk->x_ext_fft_len = n2;
2021-02-15 20:48:16 +00:00
TRY(new_p1(&x, n));
2021-02-10 11:55:38 +00:00
for (uint64_t i = 0; i < n - 1; i++) {
x[i] = ks->secret_g1[n - 2 - i];
}
2021-02-13 10:27:36 +00:00
x[n - 1] = g1_identity;
2021-02-10 11:55:38 +00:00
2021-02-15 20:48:16 +00:00
TRY(new_p1(&fk->x_ext_fft, 2 * n));
TRY(toeplitz_part_1(fk->x_ext_fft, x, n, ks->fs));
2021-02-10 11:55:38 +00:00
free(x);
return C_KZG_OK;
}
2021-02-13 10:27:36 +00:00
/**
* Initialise settings for an FK20 multi proof.
*
* @remark As with all functions prefixed `new_`, this allocates memory that needs to be reclaimed by calling the
* corresponding `free_` function. In this case, #free_fk20_multi_settings.
2021-02-13 10:27:36 +00:00
*
* @param[out] fk The initialised settings
* @param[in] n2 The desired size of `x_ext_fft`, a power of two
* @param[in] chunk_len TODO
2021-02-13 10:27:36 +00:00
* @param[in] ks KZGSettings that have already been initialised
* @retval C_CZK_OK All is well
* @retval C_CZK_BADARGS Invalid parameters were supplied
* @retval C_CZK_ERROR An internal error occurred
* @retval C_CZK_MALLOC Memory allocation failed
*/
C_KZG_RET new_fk20_multi_settings(FK20MultiSettings *fk, uint64_t n2, uint64_t chunk_len, const KZGSettings *ks) {
uint64_t n, k;
blst_p1 *x;
ASSERT(n2 <= ks->fs->max_width, C_KZG_BADARGS);
ASSERT(is_power_of_two(n2), C_KZG_BADARGS);
ASSERT(n2 >= 2, C_KZG_BADARGS);
ASSERT(chunk_len <= n2, C_KZG_BADARGS);
ASSERT(is_power_of_two(chunk_len), C_KZG_BADARGS);
ASSERT(chunk_len > 0, C_KZG_BADARGS);
n = n2 / 2;
k = n / chunk_len;
fk->ks = ks;
fk->chunk_len = chunk_len;
2021-02-15 20:48:16 +00:00
// `x_ext_fft_files` is two dimensional. Allocate space for pointers to the rows.
TRY(c_kzg_malloc((void **)&fk->x_ext_fft_files, chunk_len * sizeof *fk->x_ext_fft_files));
2021-02-13 10:27:36 +00:00
2021-02-15 20:48:16 +00:00
TRY(new_p1(&x, k));
2021-02-13 10:27:36 +00:00
for (uint64_t offset = 0; offset < chunk_len; offset++) {
uint64_t start = n - chunk_len - 1 - offset;
for (uint64_t i = 0, j = start; i + 1 < k; i++, j -= chunk_len) {
x[i] = ks->secret_g1[j];
}
x[k - 1] = g1_identity;
2021-02-15 20:48:16 +00:00
TRY(new_p1(&fk->x_ext_fft_files[offset], 2 * k));
TRY(toeplitz_part_1(fk->x_ext_fft_files[offset], x, k, ks->fs));
2021-02-13 10:27:36 +00:00
}
free(x);
return C_KZG_OK;
}
2021-02-12 16:49:31 +00:00
/**
* Free the memory that was previously allocated by #new_fk20_single_settings.
*
* @param fk The settings to be freed
*/
2021-02-10 11:55:38 +00:00
void free_fk20_single_settings(FK20SingleSettings *fk) {
2021-02-15 20:48:16 +00:00
free(fk->x_ext_fft);
2021-02-12 16:49:31 +00:00
fk->x_ext_fft_len = 0;
}
2021-02-13 10:27:36 +00:00
/**
* Free the memory that was previously allocated by #new_fk20_multi_settings.
*
* @param fk The settings to be freed
*/
void free_fk20_multi_settings(FK20MultiSettings *fk) {
for (uint64_t i = 0; i < fk->chunk_len; i++) {
2021-02-15 20:48:16 +00:00
free((fk->x_ext_fft_files)[i]);
2021-02-13 10:27:36 +00:00
}
free(fk->x_ext_fft_files);
fk->chunk_len = 0;
fk->length = 0;
}