A JavaScript library for arbitrary-precision arithmetic.
In all examples below, var
and semicolons are not shown, and
if a commented-out value is in quotes it means toString
has
been called on the preceding expression.
BigNumber(value [, base]) ⇒
BigNumber
value
±0
,
±Infinity
and NaN
.
toString
or
valueOf
on such numbers may not result in the intended
value.
'0xff'
, are
invalid, and string values in octal literal form will be interpreted as
decimals, e.g. '011'
is interpreted as 11, not 9.
a-z
represents values from 10 to 35, A-Z
from 36 to 61, and
$
and _
represent 62 and 63 respectively
(this can be changed by ediiting the DIGITS variable near the top of the
source file).
base
2
to 64
inclusive
value
.base
is omitted, or is null
or undefined,
base 10 is assumed.Returns a new instance of a BigNumber object.
If a base is specified, the value is rounded according to
the current DECIMAL_PLACES
and
ROUNDING_MODE
settings.
Usefully, this means the decimal places of a decimal value
passed to the constructor can be limited by explicitly specifying base 10.
See Errors for the treatment of an invalid
value
or base
.
x = new BigNumber(9) // '9' y = new BigNumber(x) // '9' BigNumber(435.345) // 'new' is optional new BigNumber('5032485723458348569331745.33434346346912144534543') new BigNumber('4.321e+4') // '43210' new BigNumber('-735.0918e-430') // '-7.350918e-428' new BigNumber(Infinity) // 'Infinity' new BigNumber(NaN) // 'NaN' new BigNumber('.5') // '0.5' new BigNumber('+2') // '2' new BigNumber(-10110100.1, 2) // '-180.5' new BigNumber('123412421.234324', 5) // '607236.557696' new BigNumber('ff.8', 16) // '255.5' new BigNumber(9, 2) // Throws 'not a base 2 number' if ERRORS is true, otherwise 'NaN' new BigNumber(96517860459076817.4395) // Throws 'number type has more than 15 significant digits' // if ERRORS is true, otherwise '96517860459076820' new BigNumber('blurgh') // Throws 'not a number' if ERRORS is true, otherwise 'NaN' BigNumber.config({DECIMAL_PLACES : 5}) new BigNumber(1.23456789) // '1.23456789' new BigNumber(1.23456789, 10) // '1.23457'
The BigNumber
constructor has one added method,
config
, which configures the library-wide settings for
arithmetic, formatting and errors.
config([settings]) ⇒ object
settings
DECIMAL_PLACES
0
to 1e+9
inclusive20
dividedBy
, squareRoot
and
toPower
methods.
BigNumber.config({ DECIMAL_PLACES : 5 }) BigNumber.config(5) // equivalent
ROUNDING_MODE
0
to 8
inclusive4
(ROUND_HALF_UP
)
round
,
toExponential
,
toFixed
and
toPrecision
.
BigNumber.config({ ROUNDING_MODE : 0 }) BigNumber.config(null, BigNumber.ROUND_UP) // equivalent
EXPONENTIAL_AT
0
to
1e+9
inclusive, or[-7, 20]
toString
returns
exponential notation.
[-7, 20]
.
BigNumber.config({ EXPONENTIAL_AT : 2 }) new BigNumber(12.3) // '12.3' e is only 1 new BigNumber(123) // '1.23e+2' new BigNumber(0.123) // '0.123' e is only -1 new BigNumber(0.0123) // '1.23e-2' BigNumber.config({ EXPONENTIAL_AT : [-7, 20] }) new BigNumber(123456789) // '123456789' e is only 8 new BigNumber(0.000000123) // '1.23e-7' // Almost never return exponential notation: BigNumber.config({ EXPONENTIAL_AT : 1e+9 }) // Always return exponential notation: BigNumber.config({ EXPONENTIAL_AT : 0 })
EXPONENTIAL_AT
, the
toFixed
method will always return a value in
normal notation and the toExponential
method will
always return a value in exponential form.
toString
with a base argument, e.g.
toString(10)
, will also always return normal notation.
RANGE
1
to
1e+9
inclusive, or[-1e+9, 1e+9]
[-324, 308]
.
BigNumber.config({ RANGE : 500 }) BigNumber.config().RANGE // [ -500, 500 ] new BigNumber('9.999e499') // '9.999e+499' new BigNumber('1e500') // 'Infinity' new BigNumber('1e-499') // '1e-499' new BigNumber('1e-500') // '0' BigNumber.config({ RANGE : [-3, 4] }) new BigNumber(99999) // '99999' e is only 4 new BigNumber(100000) // 'Infinity' e is 5 new BigNumber(0.001) // '0.01' e is only -3 new BigNumber(0.0001) // '0' e is -4
ERRORS
true, false, 1 or 0
true
ERRORS
is false, this library will not throw errors.
BigNumber.config({ ERRORS : false })
Returns an object with the above properties and their current
values.
If the value to be assigned to any of the above properties is
null
or undefined it is ignored. See
Errors for the treatment of invalid values.
BigNumber.config({ DECIMAL_PLACES : 40, ROUNDING_MODE : BigNumber.ROUND_HALF_CEIL, EXPONENTIAL_AT : [-10, 20], RANGE : [-500, 500], ERRORS : true }); // Alternatively but equivalently: BigNumber.config( 40, 7, [-10, 20], 500, 1 ) obj = BigNumber.config(); obj.ERRORS // true obj.RANGE // [-500, 500]
The library's enumerated rounding modes are stored as properties of the
constructor.
They are not referenced internally by the library itself.
Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.
Property | Value | Description |
---|---|---|
ROUND_UP | 0 | Rounds away from zero |
ROUND_DOWN | 1 | Rounds towards zero |
ROUND_CEIL | 2 | Rounds towards Infinity |
ROUND_FLOOR | 3 | Rounds towards -Infinity |
ROUND_HALF_UP | 4 |
Rounds towards nearest neighbour. If equidistant, rounds away from zero |
ROUND_HALF_DOWN | 5 |
Rounds towards nearest neighbour. If equidistant, rounds towards zero |
ROUND_HALF_EVEN | 6 |
Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour |
ROUND_HALF_CEIL | 7 |
Rounds towards nearest neighbour. If equidistant, rounds towards Infinity |
ROUND_HALF_FLOOR | 8 |
Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity |
BigNumber.config({ ROUNDING_MODE : BigNumber.ROUND_CEIL }) BigNumber.config({ ROUNDING_MODE : 2 }) // equivalent
The methods inherited by a BigNumber instance from its constructor's prototype object.
A BigNumber is immutable in the sense that it is not changed by its methods.
The treatment of ±0
, ±Infinity
and
NaN
is consistent with how JavaScript treats these values.
Method names over 5 letters in length have a shorter alias (except
valueOf
).
Internally, the library always uses the shorter method names.
.abs() ⇒ BigNumber
Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of this BigNumber.
x = new BigNumber(-0.8) y = x.absoluteValue() // '0.8' z = y.abs() // '0.8'
.ceil() ⇒ BigNumber
Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in the direction of Infinity.
x = new BigNumber(1.3) x.ceil() // '2' y = new BigNumber(-1.8) y.ceil() // '-1'
.floor() ⇒
BigNumber
Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in the direction of -Infinity.
x = new BigNumber(1.8) x.floor() // '1' y = new BigNumber(-1.3) y.floor() // '-2'
.neg() ⇒ BigNumber
Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1.
x = new BigNumber(1.8) x.negated() // '-1.8' y = new BigNumber(-1.3) y.neg() // '1.3'
.sqrt() ⇒ BigNumber
Returns a BigNumber whose value is the square root of this BigNumber,
correctly rounded according to the current
DECIMAL_PLACES
and
ROUNDING_MODE
settings.
x = new BigNumber(16) x.squareRoot() // '4' y = new BigNumber(3) y.sqrt() // '1.73205080756887729353'
.isF() ⇒ boolean
Returns true
if the value of this BigNumber is a finite
number, otherwise returns false
.
The only possible non-finite values of a BigNumber are NaN, Infinity and
-Infinity.
x = new BigNumber(1) x.isFinite() // true y = new BigNumber(Infinity) y.isF() // false
Note: The native method isFinite()
can be used if
n <= Number.MAX_VALUE
.
.isNaN() ⇒ boolean
Returns true
if the value of this BigNumber is NaN, otherwise
returns false
.
x = new BigNumber(NaN) x.isNaN() // true y = new BigNumber('Infinity') y.isNaN() // false
Note: The native method isNaN()
can also be used.
.isNeg() ⇒ boolean
Returns true
if the value of this BigNumber is negative,
otherwise returns false
.
x = new BigNumber(-0) x.isNegative() // true y = new BigNumber(2) y.isNeg // false
Note: n < 0
can be used if
n <= -Number.MIN_VALUE
.
.isZ() ⇒ boolean
Returns true
if the value of this BigNumber is zero or minus
zero, otherwise returns false
.
x = new BigNumber(-0) x.isZero() && x.isNeg() // true y = new BigNumber(Infinity) y.isZ() // false
Note: n == 0
can be used if
n >= Number.MIN_VALUE
.
.cmp(n [, base]) ⇒ number
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns | ||
---|---|---|
1 |
If the value of this BigNumber is greater than the value of n
|
|
-1 |
If the value of this BigNumber is less than the value of n
|
|
0 | If this BigNumber and n have the same value |
|
null |
if the value of either this BigNumber or n is
NaN
|
x = new BigNumber(Infinity) y = new BigNumber(5) x.comparedTo(y) // 1 x.comparedTo(x.minus(1)) // 0 y.cmp(NaN) // null y.cmp('110', 2) // -1
.div(n [, base]) ⇒
BigNumber
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns a BigNumber whose value is the value of this BigNumber divided by
n
, rounded according to the current
DECIMAL_PLACES
and
ROUNDING_MODE
settings.
x = new BigNumber(355) y = new BigNumber(113) x.dividedBy(y) // '3.14159292035398230088' x.div(5) // '71' x.div(47, 16) // '5'
.minus(n [, base]) ⇒ BigNumber
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns a BigNumber whose value is the value of this BigNumber minus
n
.
0.3 - 0.1 // 0.19999999999999998 x = new BigNumber(0.3) x.minus(0.1) // '0.2' x.minus(0.6, 20) // '0'
.mod(n [, base]) ⇒ BigNumber
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns a BigNumber whose value is the value of this BigNumber modulo
n
, i.e. the integer remainder of dividing this BigNumber by
n
.
The result will have the same sign as this BigNumber, and it will match that of JavaScript's % operator (within the limits of its precision) and BigDecimal's remainder method.
1 % 0.9 // 0.09999999999999998 x = new BigNumber(1) x.modulo(0.9) // '0.1' y = new BigNumber(33) y.mod('a', 33) // '3'
.plus(n [, base]) ⇒ BigNumber
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns a BigNumber whose value is the value of this BigNumber plus
n
.
0.1 + 0.2 // 0.30000000000000004 x = new BigNumber(0.1) y = x.plus(0.2) // '0.3' BigNumber(0.7).plus(x).plus(y) // '1' x.plus('0.1', 8) // '0.225'
.times(n [, base]) ⇒ BigNumber
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns a BigNumber whose value is the value of this BigNumber times
n
.
0.6 * 3 // 1.7999999999999998 x = new BigNumber(0.6) y = x.times(3) // '1.8' BigNumber('7e+500').times(y) // '1.26e+501' x.times('-a', 16) // '-6'
.pow(exp) ⇒ BigNumber
exp
: number : integer, -1e+6 to 1e+6 inclusive
Returns a BigNumber whose value is the value of this BigNumber raised to
the power exp
.
If exp
is negative the result is rounded according to the
current DECIMAL_PLACES
and
ROUNDING_MODE
settings.
If exp
is not an integer or is out of range:
If ERRORS
is true
a BigNumber
Error is thrown,
else if exp
is greater than 1e+6, it is interpreted as
Infinity
;
else if exp
is less than -1e+6, it is interpreted as
-Infinity
;
else if exp
is otherwise a number, it is truncated to an
integer;
else it is interpreted as NaN
.
Note: High value exponents may cause this method to be slow to return.
Math.pow(0.7, 2) // 0.48999999999999994 x = new BigNumber(0.7) x.toPower(2) // '0.49' BigNumber(3).pow(-2) // '0.11111111111111111111' new BigNumber(123.456).toPower(1000).toString().length // 5099 new BigNumber(2).pow(1e+6) // Time taken (Node.js): 9 minutes 34 secs.
.eq(n [, base]) ⇒ boolean
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns true
if the value of this BigNumber equals the value
of n
, otherwise returns false
.
As with JavaScript, NaN does not equal NaN.
Note : This method uses the comparedTo
method
internally.
0 === 1e-324 // true x = new BigNumber(0) x.equals('1e-324') // false BigNumber(-0).eq(x) // true ( -0 === 0 ) BigNumber(255).eq('ff', 16) // true y = new BigNumber(NaN) y.equals(NaN) // false
.gt(n [, base]) ⇒
boolean
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns true
if the value of this BigNumber is greater than
the value of n
, otherwise returns false
.
Note : This method uses the comparedTo
method internally.
0.1 > (0.3 - 0.2) // true x = new BigNumber(0.1) x.greaterThan(BigNumber(0.3).minus(0.2)) // false BigNumber(0).gt(x) // false BigNumber(11, 3).gt(11.1, 2) // true
.gte(n [, base]) ⇒
boolean
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns true
if the value of this BigNumber is greater than
or equal to the value of n
, otherwise returns
false
.
Note : This method uses the comparedTo
method internally.
(0.3 - 0.2) >= 0.1 // false x = new BigNumber(0.3).minus(0.2) x.greaterThanOrEqualTo(0.1) // true BigNumber(1).gte(x) // true BigNumber(10, 18).gte('i', 36) // true
.lt(n [, base]) ⇒ boolean
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns true
if the value of this BigNumber is less than the
value of n
, otherwise returns false
.
Note : This method uses the comparedTo
method internally.
(0.3 - 0.2) < 0.1 // true x = new BigNumber(0.3).minus(0.2) x.lessThan(0.1) // false BigNumber(0).lt(x) // true BigNumber(11.1, 2).lt(11, 3) // true
.lte(n [, base]) ⇒
boolean
n
: number|string|BigNumber
base
: number
See constructor for further parameter details.
Returns true
if the value of this BigNumber is less than or
equal to the value of n
, otherwise returns
false
.
Note : This method uses the comparedTo
method internally.
0.1 <= (0.3 - 0.2) // false x = new BigNumber(0.1) x.lessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true BigNumber(-1).lte(x) // true BigNumber(10, 18).lte('i', 36) // true
.toE([decimal_places]) ⇒
string
decimal_places
: number : integer, 0 to 1e+9 inclusive
Returns a string representing the value of this BigNumber in exponential
notation to the specified decimal places, i.e with one digit before the
decimal point and decimal_places
digits after it. If rounding
is necessary, the current
ROUNDING_MODE
is used.
If the value of this BigNumber in exponential notation has fewer fraction
digits then is specified by decimal_places
, the return value
will be appended with zeros accordingly.
If decimal_places
is omitted, or is null
or
undefined, the number of digits after the decimal point defaults to the
minimum number of digits necessary to represent the value exactly.
See Errors for the treatment of other
non-integer or out of range decimal_places
values.
x = 45.6 y = new BigNumber(x) x.toExponential() // '4.56e+1' y.toExponential() // '4.56e+1' x.toExponential(0) // '5e+1' y.toE(0) // '5e+1' x.toExponential(1) // '4.6e+1' y.toE(1) // '4.6e+1' x.toExponential(3) // '4.560e+1' y.toE(3) // '4.560e+1'
.toF([decimal_places]) ⇒
string
decimal_places
: number : integer, 0 to 1e+9 inclusive
Returns a string representing the value of this BigNumber in normal
notation to the specified fixed number of decimal places, i.e. with
decimal_places
digits after the decimal point. If rounding is
necessary, the current
ROUNDING_MODE
setting is used.
If the value of this BigNumber in normal notation has fewer fraction
digits then is specified by decimal_places
, the return value
will be appended with zeros accordingly.
Unlike Number.prototype.toFixed
, which returns
exponential notation if a number is greater or equal to 1021,
this method will always return normal notation.
If decimal_places
is omitted, or is null
or
undefined, then the return value is the same as n.toString()
.
This is also unlike Number.prototype.toFixed
, which returns
the value to zero decimal places.
See Errors for the treatment of other
non-integer or out of range decimal_places
values.
x = 45.6 y = new BigNumber(x) x.toFixed() // '46' y.toFixed() // '45.6' y.toF(0) // '46' x.toFixed(3) // '45.600' y.toF(3) // '45.600'
.toP([significant_figures]) ⇒
string
significant_figures
: number : integer, 1 to 1e+9
inclusive
Returns a string representing the value of this BigNumber to the
specified number of significant digits. If rounding is necessary, the
current ROUNDING_MODE
setting is
used.
If significant_figures
is less than the number of digits
necessary to represent the integer part of the value in normal notation,
then exponential notation is used.
If significant_figures
is omitted, or is null
or
undefined, then the return value is the same as n.toString()
.
See Errors for the treatment of other
non-integer or out of range significant_figures
values.
x = 45.6 y = new BigNumber(x) x.toPrecision() // '45.6' y.toPrecision() // '45.6' x.toPrecision(1) // '5e+1' y.toP(1) // '5e+1' x.toPrecision(5) // '45.600' y.toP(5) // '45.600'
.toS([base]) ⇒ string
base
: number : integer, 2 to 64 inclusive
Returns a string representing the value of this BigNumber in the specified
base, or base 10 if base
is omitted. For bases above 10,
values from 10 to 35 are represented by a-z
(as with
Number.toString
), 36 to 61 by A-Z
, and 62 and 63
by $
and _
respectively.
If a base is specified the value is rounded according to the current
DECIMAL_PLACES
and ROUNDING_MODE
settings.
If a base is not specified, and this BigNumber has a positive
exponent that is equal to or greater than the positive component of the
current EXPONENTIAL_AT
setting,
or a negative exponent equal to or less than the negative component of the
setting, then exponential notation is returned.
If base
is null
or undefined it is ignored.
See Errors for the treatment of other non-integer or
out of range base
values.
x = new BigNumber(750000) x.toString() // '750000' BigNumber.config({ EXPONENTIAL_AT : 5 }) x.toString() // '7.5e+5' y = new BigNumber(362.875) y.toString(2) // '101101010.111' y.toString(9) // '442.77777777777777777778' y.toString(32) // 'ba.s' BigNumber.config({ DECIMAL_PLACES : 4 }); z = new BigNumber('1.23456789') z.toString() // '1.23456789' z.toString(10) // '1.2346'
.valueOf() ⇒ string
As toString
, but does not accept a base argument.
x = new BigNumber('1.777e+457') x.valueOf() // '1.777e+457'
.toFr([max_denominator]) ⇒
[string, string]
max_denominator
: number|string|BigNumber :
integer >= 1 and < Infinity
Returns a string array representing the value of this BigNumber as a
simple fraction with an integer numerator and an integer denominator. The
denominator will be a positive non-zero value less than or equal to
max_denominator
.
If a maximum denominator is not specified, or is null
or
undefined, the denominator will be the lowest value necessary to represent
the number exactly.
See Errors for the treatment of other non-integer or
out of range max_denominator
values.
x = new BigNumber(1.75) x.toFraction() // '7, 4' pi = new BigNumber('3.14159265358') pi.toFr() // '157079632679,50000000000' pi.toFr(100000) // '312689, 99532' pi.toFr(10000) // '355, 113' pi.toFr(100) // '311, 99' pi.toFr(10) // '22, 7' pi.toFr(1) // '3, 1'
.round([decimal_places [, rounding_mode]])
⇒ BigNumber
decimal_places
: number : integer, 0 to 1e+9 inclusive
rounding_mode
: number : integer, 0 to 8 inclusive
Returns a BigNumber whose value is the value of this BigNumber rounded by
the specified rounding_mode
to a maximum of
decimal_places
digits after the decimal point.
if decimal_places
is omitted, or is null
or
undefined, the return value is n
rounded to a whole number.
if rounding_mode
is omitted, or is null
or
undefined, the current
ROUNDING_MODE
setting is used.
See Errors for the treatment of other
non-integer or out of range decimal_places
or
rounding_mode
values.
x = 1234.56 Math.round(x) // 1235 y = new BigNumber(x) y.round() // '1235' y.round(1) // '1234.6' y.round(2) // '1234.56' y.round(10) // '1234.56' y.round(0, 1) // '1234' y.round(0, 6) // '1235' y.round(1, 1) // '1234.5' y.round(1, BigNumber.ROUND_HALF_EVEN) // '1234.6' y // '1234.56'
A BigNumber is an object with three properties:
Property | Description | Type | Value |
---|---|---|---|
c | coefficient* | number[] |
Array of single digits |
e | exponent | number | Integer, -1e+9 to 1e+9 inclusive |
s | sign | number | -1 or 1 |
*significand
The value of any of the three properties may also be null
.
The value of a BigNumber is stored in a normalised decimal floating point
format which corresponds to the value's toExponential
form,
with the decimal point to be positioned after the most significant
(left-most) digit of the coefficient.
Note that, as with JavaScript numbers, the original exponent and fractional trailing zeros are not preserved.
x = new BigNumber(0.123) // '0.123' x.toExponential() // '1.23e-1' x.c // '1,2,3' x.e // -1 x.s // 1 y = new Number(-123.4567000e+2) // '-12345.67' y.toExponential() // '-1.234567e+4' z = new BigNumber('-123.4567000e+2') // '-12345.67' z.toExponential() // '-1.234567e+4' z.c // '1,2,3,4,5,6,7' z.e // 4 z.s // -1
A BigNumber is mutable in the sense that the value of its properties can
be changed.
For example, to rapidly shift a value by a power of 10:
x = new BigNumber('1234.000') // '1234' x.toExponential() // '1.234e+3' x.c // '1,2,3,4' x.e // 3 x.e = -5 x // '0.00001234'
If changing the coefficient array directly, which is not recommended, be careful to avoid leading or trailing zeros (unless zero itself is being represented).
The table below shows how ±0, NaN and ±Infinity are stored.
c | e | s | |
---|---|---|---|
±0 | [0] |
0 |
±1 |
NaN | null |
null |
null |
±Infinity | null |
null |
±1 |
x = new Number(-0) // 0 1 / x == -Infinity // true y = new BigNumber(-0) // '0' y.c // '0' ( [0].toString() ) y.e // 0 y.s // -1
The errors that are thrown are generic Error
objects with
name
BigNumber Error. The table below shows the errors
that may be thrown if ERRORS
is true
, and the
action taken if ERRORS
is false
.
Method(s) | ERRORS : true Throw BigNumber Error |
ERRORS : false Action on invalid argument |
---|---|---|
BigNumber |
number type has more than 15 significant digits |
Accept. |
not a base... number | Substitute NaN . |
|
base not an integer | Truncate to integer. Ignore if not a number. |
|
base out of range | Ignore. | |
not a number* | Substitute NaN . |
|
config |
DECIMAL_PLACES not an integer |
Truncate to integer. Ignore if not a number. |
DECIMAL_PLACES out of range |
Ignore. | |
ROUNDING_MODE not an integer |
Truncate to integer. Ignore if not a number. |
|
ROUNDING_MODE out of range |
Ignore. | |
EXPONENTIAL_AT not an integeror not [integer, integer] |
Truncate to integer(s). Ignore if not number(s). |
|
EXPONENTIAL_AT out of rangeor not [negative, positive] |
Ignore. | |
RANGE not a non-zero integeror not [integer, integer] |
Truncate to integer(s). Ignore if zero or not number(s). |
|
RANGE out of rangeor not [negative, positive] |
Ignore. | |
ERRORS not a booleanor binary digit |
Ignore. | |
toPower |
exponent not an integer | Truncate to integer. Substitute NaN if not a number. |
exponent out of range | Substitute ±Infinity .
|
|
round |
decimal places not an integer | Truncate to integer. Ignore if not a number. |
decimal places out of range | Ignore. | |
mode not an integer | Truncate to integer. Ignore if not a number. |
|
mode out of range | Ignore. | |
toExponential |
decimal places not an integer | Truncate to integer. Ignore if not a number. |
decimal places out of range | Ignore. | |
toFixed |
decimal places not an integer | Truncate to integer. Ignore if not a number. |
decimal places out of range | Ignore. | |
toFraction |
max denominator not an integer | Truncate to integer. Ignore if not a number. |
max denominator out of range | Ignore. | |
toPrecision |
precision not an integer | Truncate to integer. Ignore if not a number. |
precision out of range | Ignore. | |
toString |
base not an integer | Truncate to integer. Ignore if not a number. |
base out of range | Ignore. |
*No error is thrown if the value is NaN
or 'NaN'
The message of a BigNumber Error will also contain the name of the method from which the error originated.
To determine if an exception is a BigNumber Error:
try { // ... } catch (e) { if ( e instanceof Error && e.name == 'BigNumber Error' ) { // ... } }
Many arbitrary-precision libraries retain trailing fractional zeros as they can indicate the precision of a value. This can be useful but the results of arithmetic operations can be misleading.
x = new BigDecimal("1.0") y = new BigDecimal("1.1000") z = x.add(y) // 2.1000 x = new BigDecimal("1.20") y = new BigDecimal("3.45000") z = x.multiply(y) // 4.1400000
To specify the precision of a value is to specify that the value lies within a certain range.
In the first example, x
has a value of 1.0. The trailing zero
shows the precision of the value, implying that it is in the range 0.95 to
1.05. Similarly, the precision indicated by the trailing zeros of
y
indicates that the value is in the range 1.09995 to
1.10005. If we add the two lowest values in the ranges we get 0.95 +
1.09995 = 2.04995 and if we add the two highest values we get 1.05 +
1.10005 = 2.15005, so the range of the result of the addition implied by
the precision of its operands is 2.04995 to 2.15005. The result given by
BigDecimal of 2.1000 however, indicates that the value is in the range
2.09995 to 2.10005 and therefore the precision implied by its trailing
zeros is misleading.
In the second example, the true range is 4.122744 to 4.157256 yet the BigDecimal answer of 4.1400000 indicates a range of 4.13999995 to 4.14000005. Again, the precision implied by the trailing zeros is misleading.
This library, like binary floating point and most calculators, does not
retain trailing fractional zeros. Instead, the toExponential
,
toFixed
and toPrecision
methods enable trailing
zeros to be added if and when required.