142 lines
3.5 KiB
Python
142 lines
3.5 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
|
||
|
# sum(shh_messages_total) by (chat)
|
||
|
|
||
|
|
||
|
def openPrometheusURL(query, timestep):
|
||
|
from time import time
|
||
|
from urllib.request import urlopen
|
||
|
|
||
|
# TODO: could escape it, but could also just avoid queries which need escaping
|
||
|
|
||
|
cur_time = time()
|
||
|
return urlopen(
|
||
|
"http://master-01.do-ams3.metrics.hq.tinc:9090/api/v1/query_range?query=%s&end=%d&start=%d&step=%s"
|
||
|
% (query, time(), time() - 3600 * 24 * 60, timestep)
|
||
|
).read()
|
||
|
|
||
|
|
||
|
def parse_data(raw_json):
|
||
|
from json import loads
|
||
|
|
||
|
j = loads(raw_json)
|
||
|
assert j["status"] == "success"
|
||
|
assert j["data"]["resultType"] == "matrix"
|
||
|
return j["data"]["result"][0]["values"]
|
||
|
|
||
|
|
||
|
def getData(pj):
|
||
|
from datetime import datetime
|
||
|
|
||
|
return list(
|
||
|
zip(
|
||
|
*[
|
||
|
(datetime.fromtimestamp(z[0]), float(z[1]))
|
||
|
for z in sorted(pj, key=lambda _: _[0])
|
||
|
]
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
def plotData(filename, ylabel, timespan, x, y):
|
||
|
# TODO: factor out as common routine
|
||
|
# allow this to run on a headless server
|
||
|
import matplotlib
|
||
|
|
||
|
matplotlib.use("Agg")
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import matplotlib.dates as mdates
|
||
|
|
||
|
assert len(x) == len(y)
|
||
|
|
||
|
# https://stackoverflow.com/questions/9627686/plotting-dates-on-the-x-axis-with-pythons-matplotlib#9627970
|
||
|
plt.clf()
|
||
|
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d"))
|
||
|
plt.gca().xaxis.set_major_locator(mdates.AutoDateLocator())
|
||
|
plt.xlabel("Date")
|
||
|
|
||
|
plt.ylabel(ylabel)
|
||
|
|
||
|
plt.title("Status.im %s %s (Prometheus)" % (timespan, ylabel))
|
||
|
|
||
|
plt.plot(x, y)
|
||
|
plt.gcf().autofmt_xdate()
|
||
|
plt.savefig(filename, dpi=150)
|
||
|
|
||
|
|
||
|
def distinct_users():
|
||
|
from collections import Counter
|
||
|
from datetime import datetime
|
||
|
from json import loads
|
||
|
|
||
|
j = loads(
|
||
|
openPrometheusURL(
|
||
|
"sum(rate(shh_messages_total[1d])*3600)%20by%20(source)", "1d"
|
||
|
)
|
||
|
)
|
||
|
assert j["status"] == "success"
|
||
|
assert j["data"]["resultType"] == "matrix"
|
||
|
|
||
|
distinct_user_count = Counter()
|
||
|
for metric_values in j["data"]["result"]:
|
||
|
source = metric_values["metric"].get("source", "")
|
||
|
values = metric_values["values"]
|
||
|
for epoch_time, hourly_rate in values:
|
||
|
if float(hourly_rate) > 0:
|
||
|
distinct_user_count[datetime.fromtimestamp(epoch_time)] += 1
|
||
|
|
||
|
# TODO: refactor, etc
|
||
|
return list(zip(*sorted(distinct_user_count.items())))
|
||
|
|
||
|
|
||
|
def main():
|
||
|
from os.path import join
|
||
|
from sys import argv
|
||
|
|
||
|
getPath = lambda n: join(argv[1], n)
|
||
|
|
||
|
plotData(
|
||
|
getPath("whisper_distinct_users_daily.png"),
|
||
|
"Whisper Users (Public Channels)",
|
||
|
"Daily",
|
||
|
*distinct_users()
|
||
|
)
|
||
|
|
||
|
plotData(
|
||
|
getPath("whisper_messages_hourly.png"),
|
||
|
"Whisper Messages (Public Channels)",
|
||
|
"Hourly",
|
||
|
*getData(
|
||
|
parse_data(
|
||
|
openPrometheusURL("sum(rate(shh_messages_total[1h]))*3600", "1h")
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
plotData(
|
||
|
getPath("whisper_messages_daily.png"),
|
||
|
"Whisper Messages (Public Channels)",
|
||
|
"Daily",
|
||
|
*getData(
|
||
|
parse_data(
|
||
|
openPrometheusURL("sum(rate(shh_messages_total[1d]))*3600*24", "1d")
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
plotData(
|
||
|
getPath("whisper_messages_weekly.png"),
|
||
|
"Whisper Messages (Public Channels)",
|
||
|
"Weekly",
|
||
|
*getData(
|
||
|
parse_data(
|
||
|
openPrometheusURL("sum(rate(shh_messages_total[1w]))*3600*24*7", "1w")
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
main()
|