mirror of
https://github.com/status-im/Vulkan-Docs.git
synced 2025-01-26 22:29:10 +00:00
ca4abe0d34
* Bump API patch number and header version number to 39 for this update. Github Issues: * Clarified that only accesses via the specified buffer/image subresource ranges are included in the access scopes (public issue 306). * Add missing valid usage statements for flink:vkCreateComputePipelines and flink:vkCreateGraphicsPipelines (public issue 427). Internal Issues: * Add a Note to the <<invariance,Invariance>> appendix about a difference between OpenGL and Vulkan with regards to how primitives derived from offsets are handled (internal issue 355). * Add the +<<VK_KHR_get_physical_device_properties2>>+, +<<VK_KHR_maintenance1>>+, and +<<VK_KHR_shader_draw_parameters>>+ extensions (internal issue 448). * Add the +<<VK_EXT_shader_subgroup_vote>>+ and +<<VK_EXT_shader_subgroup_ballot>>+ extensions (internal issue 449). * Update the texture level-of-detail equation in the <<textures-scale-factor,Scale Factor Operation>> section to better approximate the ellipse major and minor axes (internal issue 547). * Forbid non-explicitly allowed uses of interface decorations in the introduction to the <<interfaces,Shader Interfaces>> chapter (internal issue 607). * Replace use of MathJax with KaTeX, for improved load-time performance as well as avoiding the scrolling-and-scrolling behavior due to MathJax asynchronous rendering when loading at an anchor inside the spec. This change also requires moving to HTML5 output for the spec instead of XHTML, and there is a visible difference in that the chapter navigation index is now in a scrollable sidebar instead of at the top of the document. We may or may not retain the nav sidebar based on feedback (internal issue 613). * Improve consistency of markup and formatting in extension appendices (internal issue 631). Other Issues: * Add explicit valid usage statements to slink:VkImageCopy requiring that the source and destination layer ranges be contained in their respective source and destination images. * Add valid usage language for swapchain of flink:vkAcquireNextImage. If the swapchain has been replaced, then it should not be passed to flink:vkAcquireNextImage. * Add a valid usage statement to flink:vkCreateImageView, that the image must have been created with an appropriate usage bit set. * Noted that slink:VkDisplayPresentInfoKHR is a valid extension of slink:VkPresentInfoKHR in the <<wsi_swapchain,WSI Swapchain>> section. * Update valid usage for flink:vkCmdSetViewport and flink:vkCmdSetScissor to account for the multiple viewport feature. If the feature is not enabled, the parameters for these functions have required values that are defined in the <<features-features-multiViewport,multiple viewports>> section of the spec but were not reflected in the valid usage text for these functions. * Add the +<<VK_EXT_swapchain_colorspace>>+ extension defining common color spaces.
952 lines
25 KiB
Plaintext
952 lines
25 KiB
Plaintext
= Math Test
|
|
|
|
This file (vkmath.txt) contains all the latexmath blocks and inlines in the
|
|
Vulkan spec and style guide, so we can see how they're rendered with
|
|
different methods and output formats.
|
|
|
|
== File chapters/fundamentals.txt
|
|
|
|
=== latexmath block 1
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[ f = { c \over { 2^b - 1 } } \]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 2
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[ f = \max\left( {c \over {2^{b-1} - 1}}, -1.0 \right) \]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
== File chapters/interfaces.txt
|
|
|
|
=== latexmath inline 1
|
|
|
|
latexmath:[$(x,y,z,\frac{1}{w})$]
|
|
|
|
=== latexmath inline 2
|
|
|
|
latexmath:[$\frac{1}{w}$]
|
|
|
|
== File chapters/primsrast.txt
|
|
|
|
=== latexmath block 3
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
s = {1 \over 2} + { \left( x_p - x_f \right) \over size }
|
|
\]
|
|
\[
|
|
t = {1 \over 2} + { \left( y_p - y_f \right) \over size }.
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 4
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
t = {{( \mathbf{p}_r - \mathbf{p}_a ) \cdot ( \mathbf{p}_b - \mathbf{p}_a )}
|
|
\over {\| \mathbf{p}_b - \mathbf{p}_a \|^2 }}
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 5
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
f = {{ (1-t) {f_a / w_a} + t { f_b / w_b} } \over
|
|
{(1-t) / w_a + t / w_b }}
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 6
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
a = -{1 \over 2}\sum_{i=0}^{n-1}
|
|
x_f^i y_f^{i \oplus 1} -
|
|
x_f^{i \oplus 1} y_f^i
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath inline 3
|
|
|
|
latexmath:[$x_f^i$] and latexmath:[$y_f^i$]
|
|
|
|
=== latexmath block 7
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
a = {\mathrm{A}(p p_b p_c) \over \mathrm{A}(p_a p_b p_c)}, \quad
|
|
b = {\mathrm{A}(p p_a p_c) \over \mathrm{A}(p_a p_b p_c)}, \quad
|
|
c = {\mathrm{A}(p p_a p_b) \over \mathrm{A}(p_a p_b p_c)},
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 8
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
f = { a {f_a / w_a} + b {f_b / w_b} + c {f_c / w_c} } \over
|
|
{ {a / w_a} + {b / w_b} + {c / w_c} }
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
== File chapters/fundamentals.txt
|
|
|
|
=== latexmath block 9
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[ f = { c \over { 2^b - 1 } } \]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 10
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[ f = \max\left( {c \over {2^{b-1} - 1}}, -1.0 \right) \]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
== File chapters/interfaces.txt
|
|
|
|
=== latexmath inline 4
|
|
|
|
latexmath:[$(x,y,z,\frac{1}{w})$]
|
|
|
|
=== latexmath inline 5
|
|
|
|
latexmath:[$\frac{1}{w}$].
|
|
|
|
== File chapters/primsrast.txt
|
|
|
|
=== latexmath block 11
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
s = {1 \over 2} + { \left( x_p - x_f \right) \over size }
|
|
\]
|
|
\[
|
|
t = {1 \over 2} + { \left( y_p - y_f \right) \over size }.
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 12
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
t = {{( \mathbf{p}_r - \mathbf{p}_a ) \cdot ( \mathbf{p}_b - \mathbf{p}_a )}
|
|
\over {\| \mathbf{p}_b - \mathbf{p}_a \|^2 }}
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 13
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
f = {{ (1-t) {f_a / w_a} + t { f_b / w_b} } \over
|
|
{(1-t) / w_a + t / w_b }}
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 14
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
a = -{1 \over 2}\sum_{i=0}^{n-1}
|
|
x_f^i y_f^{i \oplus 1} -
|
|
x_f^{i \oplus 1} y_f^i
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath inline 6
|
|
|
|
latexmath:[$x_f^i$] and latexmath:[$y_f^i$]
|
|
|
|
=== latexmath block 15
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
a = {\mathrm{A}(p p_b p_c) \over \mathrm{A}(p_a p_b p_c)}, \quad
|
|
b = {\mathrm{A}(p p_a p_c) \over \mathrm{A}(p_a p_b p_c)}, \quad
|
|
c = {\mathrm{A}(p p_a p_b) \over \mathrm{A}(p_a p_b p_c)},
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 16
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
f = { a {f_a / w_a} + b {f_b / w_b} + c {f_c / w_c} } \over
|
|
{ {a / w_a} + {b / w_b} + {c / w_c} }
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 17
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[ f = \sum_{i=1}^{n} a_i f_i \]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath inline 7
|
|
|
|
latexmath:[$\sum_{i=1}^{n}a_i = 1$].
|
|
|
|
=== latexmath block 18
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
m = \sqrt{ \left({\partial z_f \over \partial x_f}\right)^2
|
|
+ \left({\partial z_f \over \partial y_f}\right)^2}
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 19
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
m = \max\left( \left| {\partial z_f \over \partial x_f} \right|,
|
|
\left| {\partial z_f \over \partial y_f} \right| \right).
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
=== latexmath block 20
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
\[
|
|
o =
|
|
\begin{cases}
|
|
m \times depthBiasSlopeFactor +
|
|
r \times depthBiasConstantFactor & depthBiasClamp = 0\ or\ NaN \\
|
|
\min(m \times depthBiasSlopeFactor +
|
|
r \times depthBiasConstantFactor,
|
|
depthBiasClamp) & depthBiasClamp > 0 \\
|
|
\max(m \times depthBiasSlopeFactor +
|
|
r \times depthBiasConstantFactor,
|
|
depthBiasClamp) & depthBiasClamp < 0 \\
|
|
\end{cases}
|
|
\]
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
== File chapters/tessellation.txt
|
|
|
|
=== latexmath inline 8
|
|
|
|
latexmath:[$\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$]
|
|
|
|
== File chapters/textures.txt
|
|
|
|
=== latexmath block 21
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
N & = 9 & \text{number of mantissa bits per component} \\
|
|
B & = 15 & \text{exponent bias} \\
|
|
E_{max} & = 31 & \text{maximum possible biased exponent value} \\
|
|
sharedexp_{max} & = \frac{(2^N-1)}{2^N} \times 2^{(E_{max}-B)}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 22
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
exp' =
|
|
\begin{cases}
|
|
\left \lfloor \log_2(max_{clamped}) \right \rfloor + (B+1)
|
|
& \text{for } max_{clamped} > 2^{-(B+1)} \\
|
|
0
|
|
& \text{for } max_{clamped} \leq 2^{-(B+1)}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 23
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
max_{shared} =
|
|
\left \lfloor
|
|
\frac{max_{clamped}}{2^{(exp'-B-N)}}+\frac{1}{2}
|
|
\right \rfloor
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 24
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
exp_{shared} =
|
|
\begin{cases}
|
|
exp' & \text{for } 0 \leq max_{shared} < 2^N \\
|
|
exp'+1 & \text{for } max_{shared} = 2^N
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 25
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
red_{shared} & =
|
|
\left \lfloor
|
|
\frac{red_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2}
|
|
\right \rfloor \\
|
|
green_{shared} & =
|
|
\left \lfloor
|
|
\frac{green_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2}
|
|
\right \rfloor \\
|
|
blue_{shared} & =
|
|
\left \lfloor
|
|
\frac{blue_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2}
|
|
\right \rfloor
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 26
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
D & = 1.0 &
|
|
\begin{cases}
|
|
D_{ref} \leq D & \text{for LEQUAL} \\
|
|
D_{ref} \geq D & \text{for GEQUAL} \\
|
|
D_{ref} < D & \text{for LESS} \\
|
|
D_{ref} > D & \text{for GREATER} \\
|
|
D_{ref} = D & \text{for EQUAL} \\
|
|
D_{ref} \neq D & \text{for NOTEQUAL} \\
|
|
true & \text{for ALWAYS} \\
|
|
false & \text{for NEVER}
|
|
\end{cases} \\
|
|
D & = 0.0 & \text{otherwise}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 27
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
C'_{rgba}[R] & =
|
|
\begin{cases}
|
|
C_{rgba}[R] & \text{for RED swizzle} \\
|
|
C_{rgba}[G] & \text{for GREEN swizzle} \\
|
|
C_{rgba}[B] & \text{for BLUE swizzle} \\
|
|
C_{rgba}[A] & \text{for ALPHA swizzle} \\
|
|
0 & \text{for ZERO swizzle} \\
|
|
one & \text{for ONE swizzle} \\
|
|
C_{rgba}[R] & \text{for IDENTITY swizzle}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 28
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
C_{rgba}[R] & \text{is the RED component} \\
|
|
C_{rgba}[G] & \text{is the GREEN component} \\
|
|
C_{rgba}[B] & \text{is the BLUE component} \\
|
|
C_{rgba}[A] & \text{is the ALPHA component} \\
|
|
one & = 1.0\text{f} & \text{for floating point components} \\
|
|
one & = 1 & \text{for integer components}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 29
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
dPdx_{i_1,j_0} & = dPdx_{i_0,j_0} & = P_{i_1,j_0} - P_{i_0,j_0} \\
|
|
dPdx_{i_1,j_1} & = dPdx_{i_0,j_1} & = P_{i_1,j_1} - P_{i_0,j_1} \\
|
|
\\
|
|
dPdy_{i_0,j_1} & = dPdy_{i_0,j_0} & = P_{i_0,j_1} - P_{i_0,j_0} \\
|
|
dPdy_{i_1,j_1} & = dPdy_{i_1,j_0} & = P_{i_1,j_1} - P_{i_1,j_0}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 30
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
dPdx & =
|
|
\begin{cases}
|
|
dPdx_{i_0,j_0} & \text{preferred}\\
|
|
dPdx_{i_0,j_1}
|
|
\end{cases} \\
|
|
dPdy & =
|
|
\begin{cases}
|
|
dPdy_{i_0,j_0} & \text{preferred}\\
|
|
dPdy_{i_1,j_0}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 31
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
s & = \frac{s}{q}, & \text{for 1D, 2D, or 3D image} \\
|
|
\\
|
|
t & = \frac{t}{q}, & \text{for 2D or 3D image} \\
|
|
\\
|
|
r & = \frac{r}{q}, & \text{for 3D image} \\
|
|
\\
|
|
D_{ref} & = \frac{D_{ref}}{q}, & \text{if provided}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
|
|
=== latexmath block 32
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\partial{s}/\partial{x} & = dPdx(s), & \partial{s}/\partial{y} & = dPdy(s), & \text{for 1D, 2D, Cube, or 3D image} \\
|
|
\partial{t}/\partial{x} & = dPdx(t), & \partial{t}/\partial{y} & = dPdy(t), & \text{for 2D, Cube, or 3D image} \\
|
|
\partial{u}/\partial{x} & = dPdx(u), & \partial{u}/\partial{y} & = dPdy(u), & \text{for Cube or 3D image}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 33
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
s_{face} & =
|
|
\frac{1}{2} \times \frac{s_c}{|r_c|} + \frac{1}{2} \\
|
|
t_{face} & =
|
|
\frac{1}{2} \times \frac{t_c}{|r_c|} + \frac{1}{2} \\
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 34
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\frac{\partial{s_{face}}}{\partial{x}} &=
|
|
\frac{\partial}{\partial{x}} \left ( \frac{1}{2} \times \frac{s_{c}}{|r_{c}|}
|
|
+ \frac{1}{2}\right ) \\
|
|
\frac{\partial{s_{face}}}{\partial{x}} &=
|
|
\frac{1}{2} \times \frac{\partial}{\partial{x}}
|
|
\left ( \frac{s_{c}}{|r_{c}|} \right ) \\
|
|
\frac{\partial{s_{face}}}{\partial{x}} &=
|
|
\frac{1}{2} \times
|
|
\left (
|
|
\frac{
|
|
|r_{c}| \times \partial{s_c}/\partial{x}
|
|
-s_c \times {\partial{r_{c}}}/{\partial{x}}}
|
|
{\left ( r_{c} \right )^2}
|
|
\right )
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 35
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\frac{\partial{s_{face}}}{\partial{y}} &=
|
|
\frac{1}{2} \times
|
|
\left (
|
|
\frac{
|
|
|r_{c}| \times \partial{s_c}/\partial{y}
|
|
-s_c \times {\partial{r_{c}}}/{\partial{y}}}
|
|
{\left ( r_{c} \right )^2}
|
|
\right )\\
|
|
\frac{\partial{t_{face}}}{\partial{x}} &=
|
|
\frac{1}{2} \times
|
|
\left (
|
|
\frac{
|
|
|r_{c}| \times \partial{t_c}/\partial{x}
|
|
-t_c \times {\partial{r_{c}}}/{\partial{x}}}
|
|
{\left ( r_{c} \right )^2}
|
|
\right ) \\
|
|
\frac{\partial{t_{face}}}{\partial{y}} &=
|
|
\frac{1}{2} \times
|
|
\left (
|
|
\frac{
|
|
|r_{c}| \times \partial{t_c}/\partial{y}
|
|
-t_c \times {\partial{r_{c}}}/{\partial{y}}}
|
|
{\left ( r_{c} \right )^2}
|
|
\right )
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 36
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\rho_{x} & = \sqrt{ m_{ux} ^{2} + m_{vx} ^{2} + m_{wx} ^{2} } \\
|
|
\rho_{y} & = \sqrt{ m_{uy} ^{2} + m_{vy} ^{2} + m_{wy} ^{2} }
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 37
|
|
|
|
:: [eq]#f~x~# is continuous and monotonically increasing in each of
|
|
[eq]#m~ux~#, [eq]#m~vx~#, and [eq]#m~wx~#
|
|
:: [eq]#f~y~# is continuous and monotonically increasing in each of
|
|
[eq]#m~uy~#, [eq]#m~vy~#, and [eq]#m~wy~#
|
|
:: [eq]#max({vert}m~ux~{vert}, {vert}m~vx~{vert}, {vert}m~wx~{vert}) {leq}
|
|
f~x~ {leq} {vert}m~ux~{vert} + {vert}m~vx~{vert} + {vert}m~wx~{vert}#
|
|
:: [eq]#max({vert}m~uy~{vert}, {vert}m~vy~{vert}, {vert}m~wy~{vert}) {leq}
|
|
f~y~ {leq} {vert}m~uy~{vert} + {vert}m~vy~{vert} + {vert}m~wy~{vert}#
|
|
|
|
=== latexmath block 38
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
N & = \min \left (\left \lceil \frac{\rho_{max}}{\rho_{min}} \right \rceil ,max_{Aniso} \right )
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 39
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\lambda_{base}(x,y) & =
|
|
\begin{cases}
|
|
shaderOp.Lod & \text{(from optional SPIR-V operand)} \\
|
|
\log_2 \left ( \frac{\rho_{max}}{N} \right ) & \text{otherwise}
|
|
\end{cases} \\
|
|
\lambda'(x,y) & = \lambda_{base} + \mathop{clamp}(sampler.bias + shaderOp.bias,-maxSamplerLodBias,maxSamplerLodBias) \\
|
|
\lambda & =
|
|
\begin{cases}
|
|
lod_{max}, & \lambda' > lod_{max} \\
|
|
\lambda', & lod_{min} \leq \lambda' \leq lod_{max} \\
|
|
lod_{min}, & \lambda' < lod_{min} \\
|
|
undefined, & lod_{min} > lod_{max} \\
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 40
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
sampler.bias & = mipLodBias & \text{(from sampler descriptor)} \\
|
|
shaderOp.bias & =
|
|
\begin{cases}
|
|
Bias & \text{(from optional SPIR-V operand)} \\
|
|
0 & \text{otherwise}
|
|
\end{cases} \\
|
|
sampler.lod_{min} & = minLod & \text{(from sampler descriptor)} \\
|
|
shaderOp.lod_{min} & =
|
|
\begin{cases}
|
|
MinLod & \text{(from optional SPIR-V operand)} \\
|
|
0 & \text{otherwise}
|
|
\end{cases} \\
|
|
\\
|
|
lod_{min} & = \max(sampler.lod_{min}, shaderOp.lod_{min}) \\
|
|
lod_{max} & = maxLod & \text{(from sampler descriptor)}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 41
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
d =
|
|
\begin{cases}
|
|
level_{base}, & \lambda \leq \frac{1}{2} \\[.5em]
|
|
nearest(\lambda), & \lambda > \frac{1}{2},
|
|
level_{base} + \lambda \leq
|
|
q + \frac{1}{2} \\[.5em]
|
|
q, & \lambda > \frac{1}{2},
|
|
level_{base} + \lambda > q + \frac{1}{2}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 42
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
nearest(\lambda) & =
|
|
\begin{cases}
|
|
\left \lceil level_{base}+\lambda + \frac{1}{2}\right \rceil - 1, &
|
|
\text{preferred} \\
|
|
\left \lfloor level_{base}+\lambda + \frac{1}{2}\right \rfloor, &
|
|
\text{alternative}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 43
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
d_{hi} & =
|
|
\begin{cases}
|
|
q, & level_{base} + \lambda \geq q \\
|
|
\left \lfloor level_{base}+\lambda \right \rfloor, & \text{otherwise}
|
|
\end{cases} \\
|
|
d_{lo} & =
|
|
\begin{cases}
|
|
q, & level_{base} + \lambda \geq q \\
|
|
d_{hi}+1, & \text{otherwise}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 44
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
u(x,y) & = s(x,y) \times width_{level} \\
|
|
v(x,y) & =
|
|
\begin{cases}
|
|
0 & \text{for 1D images} \\
|
|
t(x,y) \times height_{level} & \text{otherwise}
|
|
\end{cases} \\
|
|
w(x,y) & =
|
|
\begin{cases}
|
|
0 & \text{for 2D or Cube images} \\
|
|
r(x,y) \times depth_{level} & \text{otherwise}
|
|
\end{cases} \\
|
|
\\
|
|
a(x,y) & =
|
|
\begin{cases}
|
|
a(x,y) & \text{for array images} \\
|
|
0 & \text{otherwise}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 45
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\mathop{RNE}(a) & =
|
|
\begin{cases}
|
|
\mathop{roundTiesToEven}(a) & \text{preferred, from IEEE Std 754-2008 Floating-Point Arithmetic} \\
|
|
\left \lfloor a + \frac{1}{2} \right \rfloor & \text{alternative}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 46
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
i &=
|
|
\begin{cases}
|
|
i \bmod size & \text{for repeat} \\
|
|
(size-1) - \mathop{mirror}
|
|
((i \bmod (2 \times size)) - size) & \text{for mirrored repeat} \\
|
|
\mathop{clamp}(i,0,size-1) & \text{for clamp to edge} \\
|
|
\mathop{clamp}(i,-1,size) & \text{for clamp to border} \\
|
|
\mathop{clamp}(\mathop{mirror}(i),0,size-1) & \text{for mirror clamp to edge}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
|
|
=== latexmath block 47
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
& \mathop{mirror}(n) =
|
|
\begin{cases}
|
|
n & \text{for } n \geq 0 \\
|
|
-(1+n) & \text{otherwise}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 48
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau[R] &= \tau_{i0j1}[level_{base}][comp] \\
|
|
\tau[G] &= \tau_{i1j1}[level_{base}][comp] \\
|
|
\tau[B] &= \tau_{i1j0}[level_{base}][comp] \\
|
|
\tau[A] &= \tau_{i0j0}[level_{base}][comp]
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 49
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau[level_{base}][comp] &=
|
|
\begin{cases}
|
|
\tau[level_{base}][R], & \text{for } comp = 0 \\
|
|
\tau[level_{base}][G], & \text{for } comp = 1 \\
|
|
\tau[level_{base}][B], & \text{for } comp = 2 \\
|
|
\tau[level_{base}][A], & \text{for } comp = 3
|
|
\end{cases}\\
|
|
comp & \,\text{from SPIR-V operand Component}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 50
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau[level] &=
|
|
\begin{cases}
|
|
\tau_{ijk}[level], & \text{for 3D image} \\
|
|
\tau_{ij}[level], & \text{for 2D or Cube image} \\
|
|
\tau_{i}[level], & \text{for 1D image}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 51
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau_{3D}[level] & = (1-\alpha)(1-\beta)(1-\gamma)\tau_{i0j0k0}[level] \\
|
|
& \, + (\alpha)(1-\beta)(1-\gamma)\tau_{i1j0k0}[level] \\
|
|
& \, + (1-\alpha)(\beta)(1-\gamma)\tau_{i0j1k0}[level] \\
|
|
& \, + (\alpha)(\beta)(1-\gamma)\tau_{i1j1k0}[level] \\
|
|
& \, + (1-\alpha)(1-\beta)(\gamma)\tau_{i0j0k1}[level] \\
|
|
& \, + (\alpha)(1-\beta)(\gamma)\tau_{i1j0k1}[level] \\
|
|
& \, + (1-\alpha)(\beta)(\gamma)\tau_{i0j1k1}[level] \\
|
|
& \, + (\alpha)(\beta)(\gamma)\tau_{i1j1k1}[level]
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 52
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau_{2D}[level] & = (1-\alpha)(1-\beta)\tau_{i0j0}[level] \\
|
|
& \, + (\alpha)(1-\beta)\tau_{i1j0}[level] \\
|
|
& \, + (1-\alpha)(\beta)\tau_{i0j1}[level] \\
|
|
& \, + (\alpha)(\beta)\tau_{i1j1}[level]
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 53
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau_{1D}[level] & = (1-\alpha)\tau_{i0}[level] \\
|
|
& \, + (\alpha)\tau_{i1}[level]
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 54
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau[level] &=
|
|
\begin{cases}
|
|
\tau_{3D}[level], & \text{for 3D image} \\
|
|
\tau_{2D}[level], & \text{for 2D or Cube image} \\
|
|
\tau_{1D}[level], & \text{for 1D image}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 55
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau &=
|
|
\begin{cases}
|
|
\tau[d], & \text{for mip mode BASE or NEAREST} \\
|
|
(1-\delta)\tau[d_{hi}]+\delta\tau[d_{lo}], & \text{for mip mode LINEAR}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 56
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau_{2Daniso} & =
|
|
\frac{1}{N}\sum_{i=1}^{N}
|
|
{\tau_{2D}\left (
|
|
u \left ( x - \frac{1}{2} + \frac{i}{N+1} , y \right ),
|
|
\left ( v \left (x-\frac{1}{2}+\frac{i}{N+1} \right ), y
|
|
\right )
|
|
\right )},
|
|
& \text{when } \rho_{x} > \rho_{y} \\
|
|
\tau_{2Daniso} &=
|
|
\frac{1}{N}\sum_{i=1}^{N}
|
|
{\tau_{2D}\left (
|
|
u \left ( x, y - \frac{1}{2} + \frac{i}{N+1} \right ),
|
|
\left ( v \left (x,y-\frac{1}{2}+\frac{i}{N+1} \right )
|
|
\right )
|
|
\right )},
|
|
& \text{when } \rho_{y} \geq \rho_{x}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
== File chapters/vertexpostproc.txt
|
|
|
|
=== latexmath inline 9
|
|
|
|
latexmath:[$ \begin{array}{c} -w_c \leq x_c \leq w_c \\ -w_c \leq y_c \leq
|
|
w_c \\ 0 \leq z_c \leq w_c \\ \end{array}
|
|
$]
|
|
|
|
=== latexmath inline 10
|
|
|
|
latexmath:[$\left(\begin{array}{c} x_c \\ y_c \\ z_c \\ w_c
|
|
\end{array}\right)$]
|
|
|
|
=== latexmath inline 11
|
|
|
|
latexmath:[$ \left(\begin{array}{c} x_d \\ y_d \\ z_d \end{array}\right) =
|
|
\left(\begin{array}{c} \frac{x_c}{w_c} \\ \frac{y_c}{w_c} \\
|
|
\frac{z_c}{w_c} \end{array}\right)
|
|
$]
|
|
|
|
=== latexmath inline 12
|
|
|
|
latexmath:[$\frac{k}{2^m - 1}$]
|
|
|
|
== File chapters/VK_IMG_filter_cubic/filter_cubic_texel_filtering.txt
|
|
|
|
=== latexmath block 57
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
cinterp(\tau_0, \tau_1, \tau_2, \tau_3, \omega) =
|
|
\frac{1}{2}
|
|
\begin{bmatrix}1 & \omega & \omega^2 & \omega^3 \end{bmatrix}
|
|
\times
|
|
\begin{bmatrix}
|
|
0 & 2 & 0 & 0 \\
|
|
-1 & 0 & 1 & 0 \\
|
|
2 & -5 & 4 & 1 \\
|
|
-1 & 3 & -3 & 1
|
|
\end{bmatrix}
|
|
\times
|
|
\begin{bmatrix}
|
|
\tau_0 \\
|
|
\tau_1 \\
|
|
\tau_2 \\
|
|
\tau_3
|
|
\end{bmatrix}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
=== latexmath block 58
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
\tau[level] &=
|
|
\begin{cases}
|
|
\tau_{2D}[level], & \text{for 2D image} \\
|
|
\tau_{1D}[level], & \text{for 1D image}
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
== File chapters/VK_IMG_filter_cubic/filter_cubic_texel_selection.txt
|
|
|
|
=== latexmath block 59
|
|
|
|
[latexmath]
|
|
++++++++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
i_{0} & = \left \lfloor u - \frac{3}{2} \right \rfloor & i_{1} & = i_{0} + 1 & i_{2} & = i_{1} + 1 & i_{3} & = i_{2} + 1 \\[1em]
|
|
j_{0} & = \left \lfloor u - \frac{3}{2} \right \rfloor & j_{1} & = j_{0} + 1 & j_{2} & = j_{1} + 1 & j_{3} & = j_{2} + 1 \\
|
|
\\
|
|
\alpha & = \mathop{frac} \left ( u - \frac{1}{2} \right ) \\[1em]
|
|
\beta & = \mathop{frac} \left ( v - \frac{1}{2} \right )
|
|
\end{aligned} \]
|
|
++++++++++++++++++++++++
|
|
|
|
== File style/writing.txt
|
|
|
|
=== latexmath inline 13
|
|
|
|
latexmath:[$[0,1\]$]
|
|
|
|
=== latexmath inline 14
|
|
|
|
latexmath:[$\frac{1 - \frac{x}{2}}{x - 1}$]
|
|
|
|
=== latexmath inline 15
|
|
|
|
latexmath:[$\mathbf{c} = t \mathbf{c}_1 + (1-t) \mathbf{c}_2.$]
|
|
|
|
=== latexmath block 60
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[ \begin{aligned}
|
|
c_{RGB} & =
|
|
\begin{cases}
|
|
\frac{c_{sRGB}}{12.92} & \text{for } c_{sRGB} \leq 0.04045 \\
|
|
\left ( \frac{c_{sRGB}+0.055}{1.055} \right )^{2.4} & \text{for } c_{sRGB} > 0.04045
|
|
\end{cases}
|
|
\end{aligned} \]
|
|
+++++++++++++++++++
|
|
|
|
=== latexmath block 61
|
|
|
|
[latexmath]
|
|
+++++++++++++++++++
|
|
\[
|
|
V =
|
|
\begin{cases}
|
|
(-1)^S \times 0.0, & E = 0, M = 0 \\
|
|
(-1)^S \times 2^{-14} \times { M \over 2^{10} },
|
|
& E = 0, M \neq 0 \\
|
|
(-1)^S \times 2^{E-15} \times { \left( 1 + { M \over 2^{10} } \right) },
|
|
& 0 < E < 31 \\
|
|
(-1)^S \times Inf, & E = 31, M = 0 \\
|
|
NaN, & E = 31, M \neq 0
|
|
\end{cases}
|
|
\]
|
|
+++++++++++++++++++
|