Vulkan-Docs/doc/specs/vulkan/appendices/VK_KHR_external_memory.txt
Jon Leech ce60b9c887 Change log for March 7, 2018 Vulkan 1.1.70 spec update:
* Vulkan 1.1 initial release. Bump API patch number and header version
    number to 70 for this update. The patch number will be used for both
    Vulkan 1.1 and Vulkan 1.0 updates, and continues to increment
    continuously from the previous Vulkan 1.0.69 update.

    NOTE: We are not publishing an updated 1.0.70 specification, or 1.1
    reference pages, along with 1.1.70. There are still minor issues to work
    out with those build targets. However, we will soon generate all three
    types of documents as part of the regular spec update cycle.

    NOTE: The GitHub KhronosGroup/Vulkan-Docs repository now maintains the
    current specification in the `master` branch. The `1.0` branch is out of
    date and will not be maintained, since we will be generating both 1.1
    and 1.0 specifications from the `master` branch in the future.

Github Issues:

  * Clarify how mapped memory ranges are flushed in
    flink:vkFlushMappedMemoryRanges (public issue 127).
  * Specify that <<synchronization-pipeline-stages, Pipeline Stages>> are a
    list of tasks that each command performs, rather than necessarily being
    discrete pieces of hardware that one task flows through. Add a
    "`synchronization command`" pipeline type which all synchronization
    command execute (it's just TOP + BOTTOM), with an explanatory note
    (public issue 554).

Internal Issues:

  * Regenerate all images used in the spec in Inkscape with a consistent
    look-and-feel, and adjust image size attributes so they're all legible,
    and not too large with respect to the spec body text (internal issue
    701).
  * Document in the <<extensions,extensions>> appendix and in the style
    guide that `KHX` extensions are no longer supported or used in the
    Vulkan 1.1 timeframe (internal issue 714).
  * Remove the leftover equations_temp directory after PDF build completes
    (internal issue 925).
  * Update the <<credits, Credits (Informative)>> appendix to include
    contributors to Vulkan 1.1, and to list them according to the API
    version(s) they contributed to (internal issue 987).
  * Add a NOTE to the introduction explaining that interfaces defined by
    extensions which were promoted to Vulkan 1.1 are now expressed as
    aliases of the Vulkan 1.1 type (internal issue 991).
  * Instrument spec source conditionals so spec can be built with 1.1
    features, extensions promoted to 1.1, or both (internal issues 992,
    998).
  * Modify the XML schema and tools to support explicit aliasing of types,
    structures, and commands, and use this to express the promotion of 1.0
    extensions to 1.1 core features, by making the extension interfaces
    aliases of the core features they were promoted to. Mark up promoted
    interfaces to allow still generating 1.0 + extension specifications
    (internal issue 991).
  * Platform names, along with corresponding preprocessor symbols to enable
    extensions specific to those platforms, are now reserved in vk.xml using
    the <platform> tag. Update the registry schema and schema specification
    to match (internal issue 1011).
  * Updated the <<textures-texel-replacement, Texel Replacement>> section to
    clarify that reads from invalid texels for image resources result in
    undefined values (internal issue 1014).
  * Modify description of patch version so it continues to increment across
    minor version changes (internal issue 1033).
  * Clarify and unify language describing physical device-level core and
    extension functionality in the <<fundamentals-validusage-extensions,
    Valid Usage for Extensions>>, <<fundamentals-validusage-versions, Valid
    Usage for Newer Core Versions>>, <<initialization-functionpointers
    Command Function Pointers>>, <<initialization-phys-dev-extensions,
    Extending Physical Device From Device Extensions>>
    <<extended-functionality-instance-extensions-and-devices, Instance
    Extensions and Device Extensions>> sections and for
    flink:vkGetPhysicalDeviceImageFormatProperties2. This documents that
    instance-level functionality is tied to the loader, and independent of
    the ICD; physical device-level functionality is tied to the ICD, and
    associated with device extensions; physical devices are treated more
    uniformly between core and extensions; and instance and physical
    versions can be different (internal issue 1048).
  * Updated the <<commandbuffers-lifecycle, Command Buffer Lifecycle>>
    section to clarify the ability for pending command buffers to transition
    to the invalid state after submission, and add a command buffer
    lifecycle diagram (internal issue 1050).
  * Clarify that some flink:VkDescriptorUpdateTemplateCreateInfo parameters
    are ignored when push descriptors are not supported (internal issue
    1054).
  * Specify that flink:vkCreateImage will return an error if the image is
    too large, in a NOTE in the slink:VkImageFormatProperties description
    (internal issue 1078).
  * Remove near-duplicate NOTEs about when to query function pointers
    dynamically in the <<initialization, Initialization>> chapter and
    replace by extending the NOTE in the <<fundamentals-abi, Application
    Binary Interface>> section (internal issue 1085).
  * Restore missing references to "`Sparse Resource Features`" in the
    flink:VkBufferCreateFlagBits description (internal issue 1086).
  * Tidy up definitions of descriptor types in the `GL_KHR_vulkan_glsl`
    specification, the <<descriptorsets, Resource Descriptors>> section and
    its subsections, and the <<interfaces-resources-descset, Descriptor Set
    Interface>> for consistency, reduction of duplicate information, and
    removal of GLSL correspondance/examples (internal issue 1090).
  * Correctly describe code:PrimitiveId as an Input for tessellation control
    and evaluation shaders, not an Output (internal issue 1109).
  * Relax the requirements on chroma offsets for nearest filtering in
    <<textures-implict-reconstruction, Implicit Reconstruction>> (internal
    issue 1116).

Other Issues:

  * Clarify the intended relationship between specification language and
    certain terms defined in the Khronos Intellectual Property Rights
    policy. Specific changes include:
  ** Rewrote IP/Copyright preamble and introduction to better agree with
     normative language both as laid out in the introduction, and the
     Khronos IPR policy.
  ** Added notion of fully informative sections, which are now tagged with
     "`(Informative)`" in their titles.
  ** Removed non-normative uses of the phrase "`not required`"
  ** Clarified the distinction between terms "`optional`" and "`not
     required:`" as they relate to the IPR Policy, and updated specification
     text to use terms consistent with the intent.
  ** Reduced additions to RFC 2119, and ensured the specification agreed
     with the leaner language.
  ** Removed the terms "`hardware`", "`software`", "`CPU`", and "`GPU`" from
     normative text.
  ** Moved several paragraphs that should not have been normative to
     informative notes.
  ** Clarified a number of definitions in the Glossary.
  ** Updated the document writing guide to match new terminology changes.
  * Explicitly state in the <<fundamentals-objectmodel-lifetime-acquire,
    application memory lifetime>> language that that for objects other than
    descriptor sets, a slink:VkDescriptorSetLayout object used in the
    creation of another object (such as slink:VkPipelineLayout or
    slink:VkDescriptorUpdateTemplateKHR) is only in use during the creation
    of that object and can be safely destroyed afterwards.
  * Updated the <<textures-scale-factor, Scale Factor Operation>> section to
    use the ratio of anisotropy, rather than the integer sample rate, to
    perform the LOD calculation. The spec still allows use of the sample
    rate as the value used to calculate the LOD, but no longer requires it.
  * Update `vulkan_ext.c` to include all platform-related definitions from
    the Vulkan platform headers, following the split of the headers into
    platform-specific and non-platform-specific files.
  * Fix bogus anchor name in the <<commandbuffers, Command Buffers>> chapter
    which accidentally duplicated an anchor in the pipelines chapter. There
    were no reference to this anchor, fortunately.
  * Add valid usage statement for slink:VkWriteDescriptorSet and
    slink:VkCopyDescriptorSet requiring that the slink:VkDescriptorSetLayout
    used to allocate the source and destination sets must not have been
    destroyed at the time flink:vkUpdateDescriptorSets is called.
  * Document mapping of subgroup barrier functions to SPIR-V, and clarify a
    place where subgroupBarrier sounds like it's execution-only in the
    standalone `GL_KHR_shader_subgroup` specification.
  * Use an HTML stylesheet derived from the Asciidoctor `colony` theme, with
    the default Arial font family replaced by the sans-serif Noto font
    family.
  * Numerous minor updates to README.adoc, build scripts, Makefiles, and
    registry and style guide specifications to support Vulkan 1.1 outputs,
    use them as defaults, and remove mention of `KHX` extensions, which are
    no longer supported.

New Extensions:

  * `VK_EXT_vertex_attrib_divisor`
2018-03-07 04:18:52 -08:00

263 lines
12 KiB
Plaintext

// Copyright (c) 2016-2018 Khronos Group. This work is licensed under a
// Creative Commons Attribution 4.0 International License; see
// http://creativecommons.org/licenses/by/4.0/
include::meta/VK_KHR_external_memory.txt[]
*Last Modified Date*::
2016-10-20
*IP Status*::
No known IP claims.
*Interactions and External Dependencies*::
- Interacts with `<<VK_KHR_dedicated_allocation>>`.
- Interacts with `<<VK_NV_dedicated_allocation>>`.
- Promoted to Vulkan 1.1 Core
*Contributors*::
- Jason Ekstrand, Intel
- Ian Elliot, Google
- Jesse Hall, Google
- Tobias Hector, Imagination Technologies
- James Jones, NVIDIA
- Jeff Juliano, NVIDIA
- Matthew Netsch, Qualcomm Technologies, Inc.
- Daniel Rakos, AMD
- Carsten Rohde, NVIDIA
- Ray Smith, ARM
- Chad Versace, Google
An application may wish to reference device memory in multiple Vulkan
logical devices or instances, in multiple processes, and/or in multiple
APIs.
This extension enables an application to export non-Vulkan handles from
Vulkan memory objects such that the underlying resources can be referenced
outside the scope of the Vulkan logical device that created them.
=== New Object Types
None.
=== New Enum Constants
* ename:VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR
* ename:VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR
* ename:VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR
* ename:VK_QUEUE_FAMILY_EXTERNAL_KHR
* ename:VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR
=== New Enums
None.
=== New Structs
* slink:VkExternalMemoryImageCreateInfoKHR
* slink:VkExternalMemoryBufferCreateInfoKHR
* slink:VkExportMemoryAllocateInfoKHR
=== New Functions
None.
=== Promotion to Vulkan 1.1
All functionality in this extension is included in core Vulkan 1.1, with the
KHR suffix omitted.
The original type, enum and command names are still available as aliases of
the core functionality.
=== Issues
1) How do applications correlate two physical devices across process or
Vulkan instance boundaries?
*RESOLVED*: New device ID fields have been introduced by
`<<VK_KHR_external_memory_capabilities>>`.
These fields, combined with the existing
slink:VkPhysicalDeviceProperties::pname:driverVersion field can be used to
identify compatible devices across processes, drivers, and APIs.
slink:VkPhysicalDeviceProperties::pname:pipelineCacheUUID is not sufficient
for this purpose because despite its description in the specification, it
need only identify a unique pipeline cache format in practice.
Multiple devices may be able to use the same pipeline cache data, and hence
it would be desirable for all of them to have the same pipeline cache UUID.
However, only the same concrete physical device can be used when sharing
memory, so an actual unique device ID was introduced.
Further, the pipeline cache UUID was specific to Vulkan, but correlation
with other, non-extensible APIs is required to enable interoperation with
those APIs.
2) If memory objects are shared between processes and APIs, is this
considered aliasing according to the rules outlined in the
<<resources-memory-aliasing,Memory Aliasing>> section?
*RESOLVED*: Yes.
Applications must take care to obey all restrictions imposed on aliased
resources when using memory across multiple Vulkan instances or other APIs.
3) Are new image layouts or metadata required to specify image layouts and
layout transitions compatible with non-Vulkan APIs, or with other instances
of the same Vulkan driver?
*RESOLVED*: Separate instances of the same Vulkan driver running on the same
GPU should have identical internal layout semantics, so applications have
the tools they need to ensure views of images are consistent between the two
instances.
Other APIs will fall into two categories: Those that are Vulkan- compatible,
and those that are Vulkan-incompatible.
Vulkan-incompatible APIs will require the image to be in the GENERAL layout
whenever they are accessing them.
Note this does not attempt to address cross-device transitions, nor
transitions to engines on the same device which are not visible within the
Vulkan API.
Both of these are beyond the scope of this extension.
4) Is a new barrier flag or operation of some type needed to prepare
external memory for handoff to another Vulkan instance or API and/or receive
it from another instance or API?
*RESOLVED*: Yes.
Some implementations need to perform additional cache management when
transitioning memory between address spaces, and other APIs, instances, or
processes may operate in a separate address space.
Options for defining this transition include:
* A new structure that can be added to the pname:pNext list in
slink:VkMemoryBarrier, slink:VkBufferMemoryBarrier, and
slink:VkImageMemoryBarrier.
* A new bit in elink:VkAccessFlags that can be set to indicate an
"`external`" access.
* A new bit in elink:VkDependencyFlags
* A new special queue family that represents an "`external`" queue.
A new structure has the advantage that the type of external transition can
be described in as much detail as necessary.
However, there is not currently a known need for anything beyond
differentiating external vs.
internal accesses, so this is likely an over-engineered solution.
The access flag bit has the advantage that it can be applied at buffer,
image, or global granularity, and semantically it maps pretty well to the
operation being described.
Additionally, the API already includes ename:VK_ACCESS_MEMORY_READ_BIT and
ename:VK_ACCESS_MEMORY_WRITE_BIT which appear to be intended for this
purpose.
However, there is no obvious pipeline stage that would correspond to an
external access, and therefore no clear way to use
ename:VK_ACCESS_MEMORY_READ_BIT or ename:VK_ACCESS_MEMORY_WRITE_BIT.
elink:VkDependencyFlags and elink:VkPipelineStageFlags operate at command
granularity rather than image or buffer granularity, which would make an
entire pipeline barrier an internal->external or external->internal barrier.
This may not be a problem in practice, but seems like the wrong scope.
Another downside of elink:VkDependencyFlags is that it lacks inherent
directionality: There are not ptext:src and ptext:dst variants of it in the
barrier or dependency description semantics, so two bits might need to be
added to describe both internal->external and external->internal
transitions.
Transitioning a resource to a special queue family corresponds well with the
operation of transitioning to a separate Vulkan instance, in that both
operations ideally include scheduling a barrier on both sides of the
transition: Both the releasing and the acquiring queue or process.
Using a special queue family requires adding an additional reserved queue
family index.
Re-using ename:VK_QUEUE_FAMILY_IGNORED would have left it unclear how to
transition a concurrent usage resource from one process to another, since
the semantics would have likely been equivalent to the currently-ignored
transition of
ename:VK_QUEUE_FAMILY_IGNORED{nbsp}->{nbsp}ename:VK_QUEUE_FAMILY_IGNORED.
Fortunately, creating a new reserved queue family index is not invasive.
Based on the above analysis, the approach of transitioning to a special
"`external`" queue family was chosen.
5) Do internal driver memory arrangements and/or other internal driver image
properties need to be exported and imported when sharing images across
processes or APIs.
*RESOLVED*: Some vendors claim this is necessary on their implementations,
but it was determined that the security risks of allowing opaque meta data
to be passed from applications to the driver were too high.
Therefore, implementations which require metadata will need to associate it
with the objects represented by the external handles, and rely on the
dedicated allocation mechanism to associate the exported and imported memory
objects with a single image or buffer.
6) Most prior interoperation and cross-process sharing APIs have been based
on image-level sharing.
Should Vulkan sharing be based on memory-object sharing or image sharing?
*RESOLVED*: These extensions have assumed memory-level sharing is the
correct granularity.
Vulkan is a lower-level API than most prior APIs, and as such attempts to
closely align with to the underlying primitives of the hardware and
system-level drivers it abstracts.
In general, the resource that holds the backing store for both images and
buffers of various types is memory.
Images and buffers are merely metadata containing brief descriptions of the
layout of bits within that memory.
Because memory object-based sharing is aligned with the overall Vulkan API
design, it exposes the full power of Vulkan on external objects.
External memory can be used as backing for sparse images, for example,
whereas such usage would be awkward at best with a sharing mechanism based
on higher-level primitives such as images.
Further, aligning the mechanism with the API in this way provides some hope
of trivial compatibility with future API enhancements.
If new objects backed by memory objects are added to the API, they too can
be used across processes with minimal additions to the base external memory
APIs.
Earlier APIs implemented interop at a higher level, and this necessitated
entirely separate sharing APIs for images and buffers.
To co-exist and interoperate with those APIs, the Vulkan external sharing
mechanism must accomodate their model.
However, if it can be agreed that memory-based sharing is the more desirable
and forward-looking design, legacy interoperation considerations can be
considered another reason to favor memory-based sharing: While native and
legacy driver primitives that may be used to implement sharing may not be as
low-level as the API here suggests, raw memory is still the least common
denominator among the types.
Image-based sharing can be cleanly derived from a set of base memory- object
sharing APIs with minimal effort, whereas image-based sharing does not
generalize well to buffer or raw-memory sharing.
Therefore, following the general Vulkan design principle of minimalism, it
is better to expose even interopability with image-based native and external
primitives via the memory sharing API, and place sufficient limits on their
usage to ensure they can be used only as backing for equivalent Vulkan
images.
This provides a consistent API for applications regardless of which platform
or external API they are targeting, which makes development of multi-API and
multi-platform applications simpler.
7) Should Vulkan define a common external handle type and provide Vulkan
functions to facilitate cross-process sharing of such handles rather than
relying on native handles to define the external objects?
*RESOLVED*: No.
Cross-process sharing of resources is best left to native platforms.
There are myriad security and extensibility issues with such a mechanism,
and attempting to re-solve all those issues within Vulkan does not align
with Vulkan's purpose as a graphics API.
If desired, such a mechanism could be built as a layer or helper library on
top of the opaque native handle defined in this family of extensions.
8) Must implementations provide additional guarantees about state implicitly
included in memory objects for those memory objects that may be exported?
*RESOLVED*: Implementations must ensure that sharing memory objects does not
transfer any information between the exporting and importing instances and
APIs other than that required to share the data contained in the memory
objects explicitly shared.
As specific examples, data from previously freed memory objects that used
the same underlying physical memory, and data from memory obects using
adjacent physical memory must not be visible to applications importing an
exported memory object.
9) Must implementations validate external handles the application provides
as input to memory import operations?
*RESOLVED*: Implementations must return an error to the application if the
provided memory handle cannot be used to complete the requested import
operation.
However, implementations need not validate handles are of the exact type
specified by the application.