mirror of
https://github.com/status-im/Vulkan-Docs.git
synced 2025-02-19 09:47:19 +00:00
* Vulkan 1.1 initial release. Bump API patch number and header version number to 70 for this update. The patch number will be used for both Vulkan 1.1 and Vulkan 1.0 updates, and continues to increment continuously from the previous Vulkan 1.0.69 update. NOTE: We are not publishing an updated 1.0.70 specification, or 1.1 reference pages, along with 1.1.70. There are still minor issues to work out with those build targets. However, we will soon generate all three types of documents as part of the regular spec update cycle. NOTE: The GitHub KhronosGroup/Vulkan-Docs repository now maintains the current specification in the `master` branch. The `1.0` branch is out of date and will not be maintained, since we will be generating both 1.1 and 1.0 specifications from the `master` branch in the future. Github Issues: * Clarify how mapped memory ranges are flushed in flink:vkFlushMappedMemoryRanges (public issue 127). * Specify that <<synchronization-pipeline-stages, Pipeline Stages>> are a list of tasks that each command performs, rather than necessarily being discrete pieces of hardware that one task flows through. Add a "`synchronization command`" pipeline type which all synchronization command execute (it's just TOP + BOTTOM), with an explanatory note (public issue 554). Internal Issues: * Regenerate all images used in the spec in Inkscape with a consistent look-and-feel, and adjust image size attributes so they're all legible, and not too large with respect to the spec body text (internal issue 701). * Document in the <<extensions,extensions>> appendix and in the style guide that `KHX` extensions are no longer supported or used in the Vulkan 1.1 timeframe (internal issue 714). * Remove the leftover equations_temp directory after PDF build completes (internal issue 925). * Update the <<credits, Credits (Informative)>> appendix to include contributors to Vulkan 1.1, and to list them according to the API version(s) they contributed to (internal issue 987). * Add a NOTE to the introduction explaining that interfaces defined by extensions which were promoted to Vulkan 1.1 are now expressed as aliases of the Vulkan 1.1 type (internal issue 991). * Instrument spec source conditionals so spec can be built with 1.1 features, extensions promoted to 1.1, or both (internal issues 992, 998). * Modify the XML schema and tools to support explicit aliasing of types, structures, and commands, and use this to express the promotion of 1.0 extensions to 1.1 core features, by making the extension interfaces aliases of the core features they were promoted to. Mark up promoted interfaces to allow still generating 1.0 + extension specifications (internal issue 991). * Platform names, along with corresponding preprocessor symbols to enable extensions specific to those platforms, are now reserved in vk.xml using the <platform> tag. Update the registry schema and schema specification to match (internal issue 1011). * Updated the <<textures-texel-replacement, Texel Replacement>> section to clarify that reads from invalid texels for image resources result in undefined values (internal issue 1014). * Modify description of patch version so it continues to increment across minor version changes (internal issue 1033). * Clarify and unify language describing physical device-level core and extension functionality in the <<fundamentals-validusage-extensions, Valid Usage for Extensions>>, <<fundamentals-validusage-versions, Valid Usage for Newer Core Versions>>, <<initialization-functionpointers Command Function Pointers>>, <<initialization-phys-dev-extensions, Extending Physical Device From Device Extensions>> <<extended-functionality-instance-extensions-and-devices, Instance Extensions and Device Extensions>> sections and for flink:vkGetPhysicalDeviceImageFormatProperties2. This documents that instance-level functionality is tied to the loader, and independent of the ICD; physical device-level functionality is tied to the ICD, and associated with device extensions; physical devices are treated more uniformly between core and extensions; and instance and physical versions can be different (internal issue 1048). * Updated the <<commandbuffers-lifecycle, Command Buffer Lifecycle>> section to clarify the ability for pending command buffers to transition to the invalid state after submission, and add a command buffer lifecycle diagram (internal issue 1050). * Clarify that some flink:VkDescriptorUpdateTemplateCreateInfo parameters are ignored when push descriptors are not supported (internal issue 1054). * Specify that flink:vkCreateImage will return an error if the image is too large, in a NOTE in the slink:VkImageFormatProperties description (internal issue 1078). * Remove near-duplicate NOTEs about when to query function pointers dynamically in the <<initialization, Initialization>> chapter and replace by extending the NOTE in the <<fundamentals-abi, Application Binary Interface>> section (internal issue 1085). * Restore missing references to "`Sparse Resource Features`" in the flink:VkBufferCreateFlagBits description (internal issue 1086). * Tidy up definitions of descriptor types in the `GL_KHR_vulkan_glsl` specification, the <<descriptorsets, Resource Descriptors>> section and its subsections, and the <<interfaces-resources-descset, Descriptor Set Interface>> for consistency, reduction of duplicate information, and removal of GLSL correspondance/examples (internal issue 1090). * Correctly describe code:PrimitiveId as an Input for tessellation control and evaluation shaders, not an Output (internal issue 1109). * Relax the requirements on chroma offsets for nearest filtering in <<textures-implict-reconstruction, Implicit Reconstruction>> (internal issue 1116). Other Issues: * Clarify the intended relationship between specification language and certain terms defined in the Khronos Intellectual Property Rights policy. Specific changes include: ** Rewrote IP/Copyright preamble and introduction to better agree with normative language both as laid out in the introduction, and the Khronos IPR policy. ** Added notion of fully informative sections, which are now tagged with "`(Informative)`" in their titles. ** Removed non-normative uses of the phrase "`not required`" ** Clarified the distinction between terms "`optional`" and "`not required:`" as they relate to the IPR Policy, and updated specification text to use terms consistent with the intent. ** Reduced additions to RFC 2119, and ensured the specification agreed with the leaner language. ** Removed the terms "`hardware`", "`software`", "`CPU`", and "`GPU`" from normative text. ** Moved several paragraphs that should not have been normative to informative notes. ** Clarified a number of definitions in the Glossary. ** Updated the document writing guide to match new terminology changes. * Explicitly state in the <<fundamentals-objectmodel-lifetime-acquire, application memory lifetime>> language that that for objects other than descriptor sets, a slink:VkDescriptorSetLayout object used in the creation of another object (such as slink:VkPipelineLayout or slink:VkDescriptorUpdateTemplateKHR) is only in use during the creation of that object and can be safely destroyed afterwards. * Updated the <<textures-scale-factor, Scale Factor Operation>> section to use the ratio of anisotropy, rather than the integer sample rate, to perform the LOD calculation. The spec still allows use of the sample rate as the value used to calculate the LOD, but no longer requires it. * Update `vulkan_ext.c` to include all platform-related definitions from the Vulkan platform headers, following the split of the headers into platform-specific and non-platform-specific files. * Fix bogus anchor name in the <<commandbuffers, Command Buffers>> chapter which accidentally duplicated an anchor in the pipelines chapter. There were no reference to this anchor, fortunately. * Add valid usage statement for slink:VkWriteDescriptorSet and slink:VkCopyDescriptorSet requiring that the slink:VkDescriptorSetLayout used to allocate the source and destination sets must not have been destroyed at the time flink:vkUpdateDescriptorSets is called. * Document mapping of subgroup barrier functions to SPIR-V, and clarify a place where subgroupBarrier sounds like it's execution-only in the standalone `GL_KHR_shader_subgroup` specification. * Use an HTML stylesheet derived from the Asciidoctor `colony` theme, with the default Arial font family replaced by the sans-serif Noto font family. * Numerous minor updates to README.adoc, build scripts, Makefiles, and registry and style guide specifications to support Vulkan 1.1 outputs, use them as defaults, and remove mention of `KHX` extensions, which are no longer supported. New Extensions: * `VK_EXT_vertex_attrib_divisor`
263 lines
12 KiB
Plaintext
263 lines
12 KiB
Plaintext
// Copyright (c) 2016-2018 Khronos Group. This work is licensed under a
|
|
// Creative Commons Attribution 4.0 International License; see
|
|
// http://creativecommons.org/licenses/by/4.0/
|
|
|
|
include::meta/VK_KHR_external_memory.txt[]
|
|
|
|
*Last Modified Date*::
|
|
2016-10-20
|
|
*IP Status*::
|
|
No known IP claims.
|
|
*Interactions and External Dependencies*::
|
|
- Interacts with `<<VK_KHR_dedicated_allocation>>`.
|
|
- Interacts with `<<VK_NV_dedicated_allocation>>`.
|
|
- Promoted to Vulkan 1.1 Core
|
|
*Contributors*::
|
|
- Jason Ekstrand, Intel
|
|
- Ian Elliot, Google
|
|
- Jesse Hall, Google
|
|
- Tobias Hector, Imagination Technologies
|
|
- James Jones, NVIDIA
|
|
- Jeff Juliano, NVIDIA
|
|
- Matthew Netsch, Qualcomm Technologies, Inc.
|
|
- Daniel Rakos, AMD
|
|
- Carsten Rohde, NVIDIA
|
|
- Ray Smith, ARM
|
|
- Chad Versace, Google
|
|
|
|
An application may wish to reference device memory in multiple Vulkan
|
|
logical devices or instances, in multiple processes, and/or in multiple
|
|
APIs.
|
|
This extension enables an application to export non-Vulkan handles from
|
|
Vulkan memory objects such that the underlying resources can be referenced
|
|
outside the scope of the Vulkan logical device that created them.
|
|
|
|
=== New Object Types
|
|
|
|
None.
|
|
|
|
=== New Enum Constants
|
|
|
|
* ename:VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR
|
|
* ename:VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR
|
|
* ename:VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR
|
|
* ename:VK_QUEUE_FAMILY_EXTERNAL_KHR
|
|
* ename:VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR
|
|
|
|
=== New Enums
|
|
|
|
None.
|
|
|
|
=== New Structs
|
|
|
|
* slink:VkExternalMemoryImageCreateInfoKHR
|
|
* slink:VkExternalMemoryBufferCreateInfoKHR
|
|
* slink:VkExportMemoryAllocateInfoKHR
|
|
|
|
=== New Functions
|
|
|
|
None.
|
|
|
|
=== Promotion to Vulkan 1.1
|
|
|
|
All functionality in this extension is included in core Vulkan 1.1, with the
|
|
KHR suffix omitted.
|
|
The original type, enum and command names are still available as aliases of
|
|
the core functionality.
|
|
|
|
=== Issues
|
|
|
|
1) How do applications correlate two physical devices across process or
|
|
Vulkan instance boundaries?
|
|
|
|
*RESOLVED*: New device ID fields have been introduced by
|
|
`<<VK_KHR_external_memory_capabilities>>`.
|
|
These fields, combined with the existing
|
|
slink:VkPhysicalDeviceProperties::pname:driverVersion field can be used to
|
|
identify compatible devices across processes, drivers, and APIs.
|
|
slink:VkPhysicalDeviceProperties::pname:pipelineCacheUUID is not sufficient
|
|
for this purpose because despite its description in the specification, it
|
|
need only identify a unique pipeline cache format in practice.
|
|
Multiple devices may be able to use the same pipeline cache data, and hence
|
|
it would be desirable for all of them to have the same pipeline cache UUID.
|
|
However, only the same concrete physical device can be used when sharing
|
|
memory, so an actual unique device ID was introduced.
|
|
Further, the pipeline cache UUID was specific to Vulkan, but correlation
|
|
with other, non-extensible APIs is required to enable interoperation with
|
|
those APIs.
|
|
|
|
2) If memory objects are shared between processes and APIs, is this
|
|
considered aliasing according to the rules outlined in the
|
|
<<resources-memory-aliasing,Memory Aliasing>> section?
|
|
|
|
*RESOLVED*: Yes.
|
|
Applications must take care to obey all restrictions imposed on aliased
|
|
resources when using memory across multiple Vulkan instances or other APIs.
|
|
|
|
3) Are new image layouts or metadata required to specify image layouts and
|
|
layout transitions compatible with non-Vulkan APIs, or with other instances
|
|
of the same Vulkan driver?
|
|
|
|
*RESOLVED*: Separate instances of the same Vulkan driver running on the same
|
|
GPU should have identical internal layout semantics, so applications have
|
|
the tools they need to ensure views of images are consistent between the two
|
|
instances.
|
|
Other APIs will fall into two categories: Those that are Vulkan- compatible,
|
|
and those that are Vulkan-incompatible.
|
|
Vulkan-incompatible APIs will require the image to be in the GENERAL layout
|
|
whenever they are accessing them.
|
|
|
|
Note this does not attempt to address cross-device transitions, nor
|
|
transitions to engines on the same device which are not visible within the
|
|
Vulkan API.
|
|
Both of these are beyond the scope of this extension.
|
|
|
|
4) Is a new barrier flag or operation of some type needed to prepare
|
|
external memory for handoff to another Vulkan instance or API and/or receive
|
|
it from another instance or API?
|
|
|
|
*RESOLVED*: Yes.
|
|
Some implementations need to perform additional cache management when
|
|
transitioning memory between address spaces, and other APIs, instances, or
|
|
processes may operate in a separate address space.
|
|
Options for defining this transition include:
|
|
|
|
* A new structure that can be added to the pname:pNext list in
|
|
slink:VkMemoryBarrier, slink:VkBufferMemoryBarrier, and
|
|
slink:VkImageMemoryBarrier.
|
|
* A new bit in elink:VkAccessFlags that can be set to indicate an
|
|
"`external`" access.
|
|
* A new bit in elink:VkDependencyFlags
|
|
* A new special queue family that represents an "`external`" queue.
|
|
|
|
A new structure has the advantage that the type of external transition can
|
|
be described in as much detail as necessary.
|
|
However, there is not currently a known need for anything beyond
|
|
differentiating external vs.
|
|
internal accesses, so this is likely an over-engineered solution.
|
|
The access flag bit has the advantage that it can be applied at buffer,
|
|
image, or global granularity, and semantically it maps pretty well to the
|
|
operation being described.
|
|
Additionally, the API already includes ename:VK_ACCESS_MEMORY_READ_BIT and
|
|
ename:VK_ACCESS_MEMORY_WRITE_BIT which appear to be intended for this
|
|
purpose.
|
|
However, there is no obvious pipeline stage that would correspond to an
|
|
external access, and therefore no clear way to use
|
|
ename:VK_ACCESS_MEMORY_READ_BIT or ename:VK_ACCESS_MEMORY_WRITE_BIT.
|
|
elink:VkDependencyFlags and elink:VkPipelineStageFlags operate at command
|
|
granularity rather than image or buffer granularity, which would make an
|
|
entire pipeline barrier an internal->external or external->internal barrier.
|
|
This may not be a problem in practice, but seems like the wrong scope.
|
|
Another downside of elink:VkDependencyFlags is that it lacks inherent
|
|
directionality: There are not ptext:src and ptext:dst variants of it in the
|
|
barrier or dependency description semantics, so two bits might need to be
|
|
added to describe both internal->external and external->internal
|
|
transitions.
|
|
Transitioning a resource to a special queue family corresponds well with the
|
|
operation of transitioning to a separate Vulkan instance, in that both
|
|
operations ideally include scheduling a barrier on both sides of the
|
|
transition: Both the releasing and the acquiring queue or process.
|
|
Using a special queue family requires adding an additional reserved queue
|
|
family index.
|
|
Re-using ename:VK_QUEUE_FAMILY_IGNORED would have left it unclear how to
|
|
transition a concurrent usage resource from one process to another, since
|
|
the semantics would have likely been equivalent to the currently-ignored
|
|
transition of
|
|
ename:VK_QUEUE_FAMILY_IGNORED{nbsp}->{nbsp}ename:VK_QUEUE_FAMILY_IGNORED.
|
|
Fortunately, creating a new reserved queue family index is not invasive.
|
|
|
|
Based on the above analysis, the approach of transitioning to a special
|
|
"`external`" queue family was chosen.
|
|
|
|
5) Do internal driver memory arrangements and/or other internal driver image
|
|
properties need to be exported and imported when sharing images across
|
|
processes or APIs.
|
|
|
|
*RESOLVED*: Some vendors claim this is necessary on their implementations,
|
|
but it was determined that the security risks of allowing opaque meta data
|
|
to be passed from applications to the driver were too high.
|
|
Therefore, implementations which require metadata will need to associate it
|
|
with the objects represented by the external handles, and rely on the
|
|
dedicated allocation mechanism to associate the exported and imported memory
|
|
objects with a single image or buffer.
|
|
|
|
6) Most prior interoperation and cross-process sharing APIs have been based
|
|
on image-level sharing.
|
|
Should Vulkan sharing be based on memory-object sharing or image sharing?
|
|
|
|
*RESOLVED*: These extensions have assumed memory-level sharing is the
|
|
correct granularity.
|
|
Vulkan is a lower-level API than most prior APIs, and as such attempts to
|
|
closely align with to the underlying primitives of the hardware and
|
|
system-level drivers it abstracts.
|
|
In general, the resource that holds the backing store for both images and
|
|
buffers of various types is memory.
|
|
Images and buffers are merely metadata containing brief descriptions of the
|
|
layout of bits within that memory.
|
|
|
|
Because memory object-based sharing is aligned with the overall Vulkan API
|
|
design, it exposes the full power of Vulkan on external objects.
|
|
External memory can be used as backing for sparse images, for example,
|
|
whereas such usage would be awkward at best with a sharing mechanism based
|
|
on higher-level primitives such as images.
|
|
Further, aligning the mechanism with the API in this way provides some hope
|
|
of trivial compatibility with future API enhancements.
|
|
If new objects backed by memory objects are added to the API, they too can
|
|
be used across processes with minimal additions to the base external memory
|
|
APIs.
|
|
|
|
Earlier APIs implemented interop at a higher level, and this necessitated
|
|
entirely separate sharing APIs for images and buffers.
|
|
To co-exist and interoperate with those APIs, the Vulkan external sharing
|
|
mechanism must accomodate their model.
|
|
However, if it can be agreed that memory-based sharing is the more desirable
|
|
and forward-looking design, legacy interoperation considerations can be
|
|
considered another reason to favor memory-based sharing: While native and
|
|
legacy driver primitives that may be used to implement sharing may not be as
|
|
low-level as the API here suggests, raw memory is still the least common
|
|
denominator among the types.
|
|
Image-based sharing can be cleanly derived from a set of base memory- object
|
|
sharing APIs with minimal effort, whereas image-based sharing does not
|
|
generalize well to buffer or raw-memory sharing.
|
|
Therefore, following the general Vulkan design principle of minimalism, it
|
|
is better to expose even interopability with image-based native and external
|
|
primitives via the memory sharing API, and place sufficient limits on their
|
|
usage to ensure they can be used only as backing for equivalent Vulkan
|
|
images.
|
|
This provides a consistent API for applications regardless of which platform
|
|
or external API they are targeting, which makes development of multi-API and
|
|
multi-platform applications simpler.
|
|
|
|
7) Should Vulkan define a common external handle type and provide Vulkan
|
|
functions to facilitate cross-process sharing of such handles rather than
|
|
relying on native handles to define the external objects?
|
|
|
|
*RESOLVED*: No.
|
|
Cross-process sharing of resources is best left to native platforms.
|
|
There are myriad security and extensibility issues with such a mechanism,
|
|
and attempting to re-solve all those issues within Vulkan does not align
|
|
with Vulkan's purpose as a graphics API.
|
|
If desired, such a mechanism could be built as a layer or helper library on
|
|
top of the opaque native handle defined in this family of extensions.
|
|
|
|
8) Must implementations provide additional guarantees about state implicitly
|
|
included in memory objects for those memory objects that may be exported?
|
|
|
|
*RESOLVED*: Implementations must ensure that sharing memory objects does not
|
|
transfer any information between the exporting and importing instances and
|
|
APIs other than that required to share the data contained in the memory
|
|
objects explicitly shared.
|
|
As specific examples, data from previously freed memory objects that used
|
|
the same underlying physical memory, and data from memory obects using
|
|
adjacent physical memory must not be visible to applications importing an
|
|
exported memory object.
|
|
|
|
9) Must implementations validate external handles the application provides
|
|
as input to memory import operations?
|
|
|
|
*RESOLVED*: Implementations must return an error to the application if the
|
|
provided memory handle cannot be used to complete the requested import
|
|
operation.
|
|
However, implementations need not validate handles are of the exact type
|
|
specified by the application.
|