Jon Leech 75bbb5f4d5 Change log for April 29, 2016 Vulkan 1.0.12 spec update:
* Bump API patch number and header version number to 12 for this
    update.

Github Issues:

  * Change valid usage statements intended to be "sub-points" to
    be actual sub-points (public issue 66).
  * Replace double negation in description of
    slink:VkRenderPassBeginInfo::pname:pClearValues (based on public
    merge 142).
  * Cleanup minor typos in spec, ref pages and XML, including those
    proposed in public pull requests 144, 150, 151, 167, 168, 181, and
    186.
  * Use *strict subset* in describing the partial order of memory
    property types for slink:VkMemoryType, and update the style guide
    accordingly (public issue 190).
  * Fix various "a image" -> "an image" typos (public issue 191).
  * Note in the <<fundamentals-validusage,Valid Usage>> and
    <<extensions-interactions,Extension Interactions>> sections that
    structures defined by extensions which may be passed in structure
    chains using the ptext:pNext member must: include initial
    ptext:sType and ptext:pNext members (public issue 192).

Internal Issues:

  * Remove duplicate language from the description of the pname:fence
    parameter to flink:vkQueueSubmit and improve validity language
    (internal issue 91).
  * Added documentation for "optional" attribute to XML readme.tex/pdf
    (internal issue 149).
  * Clarify the host-side data validity rules and behavior of
    flink:vkFlushMappedMemoryRanges and
    flink:vkInvalidateMappedMemoryRanges (internal issue 266).

Other Commits:

  * Added clarification to flink:vkCmdFillBuffer regarding the use of
    ename:VK_WHOLE_SIZE.
  * Fixed and documented implementation of "validextensionstructs"
    attribute. in XML processing scripts and readme.tex/pdf.
  * Add missing validity statements to flink:vkResetEvent and
    flink:vkCmdResetEvent.
  * Fix validity for the
    ename:VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag.
    Correct all the draw/dispatch commands to mention optimally tiled
    images as well as linear tiled images, and say image VIEWS instead
    of images. Add validity statement to flink:vkCmdBlitImage
  * Replace the {apiname} macro with hardcoded "Vulkan", now that we've
    committed to that name.
  * Add the VK_AMD_rasterization_order extension to vk.xml.
2016-04-29 14:53:46 +02:00

531 lines
24 KiB
Plaintext

// Copyright (c) 2015-2016 The Khronos Group Inc.
// Copyright notice at https://www.khronos.org/registry/speccopyright.html
[[copies]]
= Copy Commands
An application can: copy buffer and image data using several methods
depending on the type of data transfer. Data can: be copied between buffer
objects with fname:vkCmdCopyBuffer and a portion of an image can: be copied
to another image with fname:vkCmdCopyImage. Image data can: also be
copied to and from buffer memory using fname:vkCmdCopyImageToBuffer and
fname:vkCmdCopyBufferToImage. Image data can: be blitted (with or without
scaling and filtering) with fname:vkCmdBlitImage. Multisampled images can:
be resolved to a non-multisampled image with fname:vkCmdResolveImage.
== Common Operation
Some rules for valid operation are common to all copy commands:
* Copy commands must: be recorded outside of a render pass instance.
* For non-sparse resources, the union of the source regions in a given
buffer or image must: not overlap the union of the destination regions
in the same buffer or image.
* For sparse resources, the set of bytes used by all the source regions
must: not intersect the set of bytes used by all the destination
regions.
* Copy regions must: be non-empty.
* Regions must: not extend outside the bounds of the buffer or image
level, except that regions of compressed images can: extend as far as
the dimension of the image level rounded up to a complete compressed
texel block.
* Source image subresources must: be in either the
ename:VK_IMAGE_LAYOUT_GENERAL or
ename:VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL layout. Destination image
subresources must: be in either the ename:VK_IMAGE_LAYOUT_GENERAL or
ename:VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout. As a consequence, if
an image subresource is used as both source and destination of a copy,
it must: be in the ename:VK_IMAGE_LAYOUT_GENERAL layout.
* Source images must: have been created with the
ename:VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit enabled and destination
images must: have been created with the
ename:VK_IMAGE_USAGE_TRANSFER_DST_BIT usage bit enabled.
* Source buffers must: have been created with the
ename:VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage bit enabled and destination
buffers must: have been created with the
ename:VK_BUFFER_USAGE_TRANSFER_DST_BIT usage bit enabled.
All copy commands are treated as ``transfer'' operations for the purposes of
synchronization barriers.
[[copies-buffers]]
== Copying Data Between Buffers
To copy data between buffer objects, call:
include::../protos/vkCmdCopyBuffer.txt[]
* pname:commandBuffer is the command buffer into which the command will be
recorded.
* pname:srcBuffer is the source buffer.
* pname:dstBuffer is the destination buffer.
* pname:regionCount is the number of regions to copy.
* pname:pRegions is a pointer to an array of slink:VkBufferCopy structures
specifying the regions to copy.
Each region in pname:pRegions is copied from the source buffer to the same
region of the destination buffer. pname:srcBuffer and pname:dstBuffer can:
be the same buffer or alias the same memory, but the result is undefined if
the copy regions overlap in memory.
include::../validity/protos/vkCmdCopyBuffer.txt[]
The sname:VkBufferCopy structure is defined as:
include::../structs/VkBufferCopy.txt[]
* pname:srcOffset is the starting offset in bytes from the start of
pname:srcBuffer.
* pname:dstOffset is the starting offset in bytes from the start of
pname:dstBuffer.
* pname:size is the number of bytes to copy.
include::../validity/structs/VkBufferCopy.txt[]
[[copies-images]]
== Copying Data Between Images
fname:vkCmdCopyImage performs image copies in a similar manner to a host
memcpy. It does not perform general-purpose conversions such as scaling,
resizing, blending, color-space conversion, or format conversions.
Rather, it simply copies raw image data. fname:vkCmdCopyImage can: copy
between images with different formats, provided the formats are compatible
as defined below.
To copy data between image objects, call:
include::../protos/vkCmdCopyImage.txt[]
* pname:commandBuffer is the command buffer into which the command will be
recorded.
* pname:srcImage is the source image.
* pname:srcImageLayout is the current layout of the source image
subresource.
* pname:dstImage is the destination image.
* pname:dstImageLayout is the current layout of the destination image
subresource.
* pname:regionCount is the number of regions to copy.
* pname:pRegions is a pointer to an array of slink:VkImageCopy structures
specifying the regions to copy.
Each region in pname:pRegions is copied from the source image to the same
region of the destination image. pname:srcImage and pname:dstImage can: be
the same image or alias the same memory.
include::../validity/protos/vkCmdCopyImage.txt[]
The sname:VkImageCopy structure is defined as:
include::../structs/VkImageCopy.txt[]
* pname:srcSubresource and pname:dstSubresource are
slink:VkImageSubresourceLayers structures specifying the image
subresources of the images used for the source and destination image
data, respectively.
* pname:srcOffset and pname:dstOffset select the initial x, y, and z
offsets in texels of the sub-regions of the source and destination image
data.
* pname:extent is the size in texels of the source image to copy in
pname:width, pname:height and pname:depth. 1D images use only pname:x
and pname:width. 2D images use pname:x, pname:y, pname:width and
pname:height. 3D images use pname:x, pname:y, pname:z, pname:width,
pname:height and pname:depth.
include::../validity/structs/VkImageCopy.txt[]
The sname:VkImageSubresourceLayers structure is defined as:
include::../structs/VkImageSubresourceLayers.txt[]
* pname:aspectMask is a combination of elink:VkImageAspectFlagBits,
selecting the color, depth and/or stencil aspects to be copied.
* pname:mipLevel is the mipmap level to copy from.
* pname:baseArrayLayer and pname:layerCount are the starting layer and
number of layers to copy.
include::../validity/structs/VkImageSubresourceLayers.txt[]
Copies are done layer by layer starting with pname:baseArrayLayer member of
pname:srcSubresource for the source and pname:dstSubresource for the
destination. pname:layerCount layers are copied to the destination image.
[[copies-images-format-compatibility]]
The formats of pname:srcImage and pname:dstImage must: be compatible.
Formats are considered compatible if their texel size in bytes is the same
between both formats. For example, ename:VK_FORMAT_R8G8B8A8_UNORM is
compatible with ename:VK_FORMAT_R32_UINT because both texels are 4
bytes in size. Depth/stencil formats must: match exactly.
fname:vkCmdCopyImage allows copying between size-compatible compressed
and uncompressed internal formats. Formats are size-compatible if the texel
size of the uncompressed format is equal to the compressed texel block size in
bytes of the compressed format. Such a copy does not perform on-the-fly
compression or decompression. When copying from an uncompressed format to a
compressed format, each texel of uncompressed data of the source image is
copied as a raw value to the corresponding compressed texel block of the
destination image. When copying from a compressed format to an uncompressed
format, each compressed texel block of the source image is copied as a raw
value to the corresponding texel of uncompressed data in the destination
image. Thus, for example, it is legal to copy between a 128-bit uncompressed
format and a compressed format which has a 128-bit sized compressed texel
block representing 4x4 texels (using 8 bits per texel), or between a 64-bit
uncompressed format and a compressed format which has a 64-bit sized
compressed texel block representing 4x4 texels (using 4 bits per texel).
When copying between compressed and uncompressed formats the pname:extent
members represent the texel dimensions of the source image and not the
destination. When copying from a compressed image to an uncompressed image
the image texel dimensions written to the uncompressed image will be source
extent divided by the compressed texel block dimensions. When copying from an
uncompressed image to a compressed image the image texel dimensions written
to the compressed image will be the source extent multiplied by the
compressed texel block dimensions. In both cases the number of bytes read and
the number of bytes written will be identical.
Copying to or from block-compressed images is typically done in multiples of
the compressed texel block. For this reason the pname:extent must: be a
multiple of the compressed texel block dimension. There is one exception to
this rule which is required: to handle compressed images created with
dimensions that are not a multiple of the compressed texel block dimensions.
If the pname:srcImage is compressed and if pname:extent.width is not a
multiple of the compressed texel block width then (pname:extent.width +
pname:srcOffset.x) must: equal the image subresource width, if
pname:extent.height is not a multiple of the compressed texel block height
then (pname:extent.height + pname:srcOffset.y) must: equal the image
subresource height and if pname:extent.depth is not a multiple of the
compressed texel block depth then (pname:extent.depth + pname:srcOffset.z)
must: equal the image subresource depth. Similarly, if the pname:dstImage is
compressed and if pname:extent.width is not a multiple of the compressed
texel block width then (pname:extent.width + pname:dstOffset.x) must: equal
the image subresource width, if pname:extent.height is not a multiple of the
compressed texel block height then (pname:extent.height + pname:dstOffset.y)
must: equal the image subresource height and if pname:extent.depth is not a
multiple of the compressed texel block depth then (pname:extent.depth +
pname:dstOffset.z) must: equal the image subresource depth. This allows the
last compressed texel block of the image in each non-multiple dimension to
be included as a source or destination of the copy.
fname:vkCmdCopyImage can: be used to copy image data between multisample
images, but both images must: have the same number of samples.
[[copies-buffers-images]]
== Copying Data Between Buffers and Images
To copy data from a buffer object to an image object, call:
include::../protos/vkCmdCopyBufferToImage.txt[]
* pname:commandBuffer is the command buffer into which the command will be
recorded.
* pname:srcBuffer is the source buffer.
* pname:dstImage is the destination image.
* pname:dstImageLayout is the layout of the destination image subresources
for the copy.
* pname:regionCount is the number of regions to copy.
* pname:pRegions is a pointer to an array of slink:VkBufferImageCopy
structures specifying the regions to copy.
Each region in pname:pRegions is copied from the specified region of the
source buffer to the specified region of the destination image.
include::../validity/protos/vkCmdCopyBufferToImage.txt[]
To copy data from an image object to a buffer object, call:
include::../protos/vkCmdCopyImageToBuffer.txt[]
* pname:commandBuffer is the command buffer into which the command will be
recorded.
* pname:srcImage is the source image.
* pname:srcImageLayout is the layout of the source image subresources for
the copy.
* pname:dstBuffer is the destination buffer.
* pname:regionCount is the number of regions to copy.
* pname:pRegions is a pointer to an array of slink:VkBufferImageCopy
structures specifying the regions to copy.
Each region in pname:pRegions is copied from the specified region of the
source image to the specified region of the destination buffer.
include::../validity/protos/vkCmdCopyImageToBuffer.txt[]
For both flink:vkCmdCopyBufferToImage and flink:vkCmdCopyImageToBuffer, each
element of pname:pRegions is a structure defined as:
include::../structs/VkBufferImageCopy.txt[]
* pname:bufferOffset is the offset in bytes from the start of the
buffer object where the image data is copied from or to.
* pname:bufferRowLength and pname:bufferImageHeight specify the
data in buffer memory as a subregion of a larger two- or
three-dimensional image, and control the addressing calculations of data
in buffer memory. If either of these values is zero, that aspect of the
buffer memory is considered to be tightly packed according to the
pname:imageExtent.
* pname:imageSubresource is an slink:VkImageSubresourceLayers used to
specify the specific image subresources of the image used for the source
or destination image data.
* pname:imageOffset selects the initial x, y, z offsets in texels of the
sub-region of the source or destination image data.
* pname:imageExtent is the size in texels of the image to copy in
pname:width, pname:height and pname:depth. 1D images use only pname:x
and pname:width. 2D images use pname:x, pname:y, pname:width and
pname:height. 3D images use pname:x, pname:y, pname:z, pname:width,
pname:height and pname:depth.
When copying to or from a depth or stencil aspect, the data in buffer
memory uses a layout that is a (mostly) tightly packed representation of
the depth or stencil data. Specifically:
* data copied to or from the stencil aspect of any depth/stencil format
is tightly packed with one ename:VK_FORMAT_S8_UINT value per texel.
* data copied to or from the depth aspect of a ename:VK_FORMAT_D16_UNORM
or ename:VK_FORMAT_D16_UNORM_S8_UINT format is tightly packed with one
ename:VK_FORMAT_D16_UNORM value per texel.
* data copied to or from the depth aspect of a ename:VK_FORMAT_D32_SFLOAT
or ename:VK_FORMAT_D32_SFLOAT_S8_UINT format is tightly packed with
one ename:VK_FORMAT_D32_SFLOAT value per texel.
* data copied to or from the depth aspect of a
ename:VK_FORMAT_X8_D24_UNORM_PACK32 or
ename:VK_FORMAT_D24_UNORM_S8_UINT format is packed with one 32-bit word
per texel with the D24 value in the LSBs of the word, and undefined
values in the eight MSBs.
[NOTE]
.Note
====
To copy both the depth and stencil aspects of a depth/stencil format, two
entries in pname:pRegions can: be used, where one specifies the depth
aspect in pname:imageSubresource, and the other specifies the stencil
aspect.
====
Because depth or stencil aspect buffer to image copies may: require format
conversions on some implementations, they are not supported on queues
that do not support graphics.
Copies are done layer by layer starting with image layer
pname:baseArrayLayer member of pname:imageSubresource. pname:layerCount
layers are copied from the source image or to the destination image.
include::../validity/structs/VkBufferImageCopy.txt[]
Pseudocode for image/buffer addressing is:
[source,c]
---------------------------------------------------
rowLength = region->bufferRowLength;
if (rowLength == 0)
rowLength = region->imageExtent.width;
imageHeight = region->bufferImageHeight;
if (imageHeight == 0)
imageHeight = region->imageExtent.height;
texelSize = <texel size taken from the src/dstImage>;
address of (x,y,z) = region->bufferOffset + (((z * imageHeight) + y) * rowLength + x) * texelSize;
where x,y,z range from (0,0,0) to region->imageExtent.{width,height,depth}.
---------------------------------------------------
Note that pname:imageOffset does not affect addressing calculations for
buffer memory. Instead, pname:bufferOffset can: be used to
select the starting address in buffer memory.
For block-compression formats, all parameters are still specified in texels
rather than compressed texel blocks, but the addressing math operates on
whole compressed texel blocks. Pseudocode for compressed copy addressing is:
[source,c]
---------------------------------------------------
rowLength = region->bufferRowLength;
if (rowLength == 0)
rowLength = region->imageExtent.width;
imageHeight = region->bufferImageHeight;
if (imageHeight == 0)
imageHeight = region->imageExtent.height;
compressedTexelBlockSizeInBytes = <compressed texel block size taken from the src/dstImage>;
rowLength /= compressedTexelBlockWidth;
imageHeight /= compressedTexelBlockHeight;
address of (x,y,z) = region->bufferOffset + (((z * imageHeight) + y) * rowLength + x) * compressedTexelBlockSizeInBytes;
where x,y,z range from (0,0,0) to region->imageExtent.{width/compressedTexelBlockWidth,height/compressedTexelBlockHeight,depth/compressedTexelBlockDepth}.
---------------------------------------------------
Copying to or from block-compressed images is typically done in multiples of
the compressed texel block. For this reason the pname:imageExtent must: be a
multiple of the compressed texel block dimension. There is one exception to
this rule which is required: to handle compressed images created with
dimensions that are not a multiple of the compressed texel block dimensions.
If pname:imageExtent.width is not a multiple of the compressed texel block
width then (pname:imageExtent.width + pname:imageOffset.x) must: equal the
image subresource width, if pname:imageExtent.height is not a multiple of
the compressed texel block height then (pname:imageExtent.height +
pname:imageOffset.y) must: equal the image subresource height and if
pname:imageExtent.depth is not a multiple of the compressed texel block
depth then (pname:imageExtent.depth + pname:imageOffset.z) must: equal the
image subresource depth. This allows the last compressed texel block of the
image in each non-multiple dimension to be included as a source or
destination of the copy.
[[copies-imagescaling]]
== Image Copies with Scaling
To copy regions of a source image into a destination image, potentially
performing format conversion, arbitrary scaling, and filtering, call:
include::../protos/vkCmdBlitImage.txt[]
* pname:commandBuffer is the command buffer into which the command will be
recorded.
* pname:srcImage is the source image.
* pname:srcImageLayout is the layout of the source image subresources for
the blit.
* pname:dstImage is the destination image.
* pname:dstImageLayout is the layout of the destination image subresources
for the blit.
* pname:regionCount is the number of regions to blit.
* pname:pRegions is a pointer to an array of slink:VkImageBlit structures
specifying the regions to blit.
* pname:filter is a elink:VkFilter specifying the filter to apply if the
blits require scaling.
include::../validity/protos/vkCmdBlitImage.txt[]
fname:vkCmdBlitImage mustnot: be used for multisampled source or destination
images. Use flink:vkCmdResolveImage for this purpose.
The sname:VkImageBlit structure is defined as:
include::../structs/VkImageBlit.txt[]
For each element of the pname:pRegions array, a blit operation is performed
between the region of pname:srcSubresource of pname:srcImage (bounded by
pname:srcOffsets[0] and pname:srcOffsets[1]) and a region of
pname:dstSubresource of pname:dstImage (bounded by pname:dstOffsets[0] and
pname:dstOffsets[1]).
include::../validity/structs/VkImageBlit.txt[]
If sizes of source and destination extents do not match, scaling is
performed by applying the filtering mode specified by pname:filter
parameter. ename:VK_FILTER_LINEAR uses bilinear interpolation, and
ename:VK_FILTER_NEAREST uses point sampling. When using
ename:VK_FILTER_LINEAR, magnifying blits may: generate texel coordinates
outside of the source region. If those coordinates are outside the bounds of
the image level, the coordinates are clamped as in
ename:VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE address mode. However, if the
coordinates are outside the source region but inside the image level, the
implementation may: clamp coordinates to the source region.
If source and destination extents are identical, no filtering is performed.
Pixels in the axis-aligned region bounded by srcOffsets[0] and srcOffsets[1]
will be copied to the destination region bound by dstOffsets[0] and
dstOffsets[1]. In the case where dstOffsets[0].x > dstOffsets[1].x the
copied pixels are reversed in that direction. Likewise for y and z.
Blits are done layer by layer starting with the pname:baseArrayLayer member
of pname:srcSubresource for the source and pname:dstSubresource for the
destination. pname:layerCount layers are blitted to the destination image.
3D textures are blitted slice by slice. Slices in the source region bounded
by pname:srcOffsets[0].z and pname:srcOffsets[1].z are copied to slices in
the destination region bounded by pname:dstOffsets[0].z and
pname:dstOffsets[1].z. For each destination slice, a source z coordinate is
linearly interpolated between pname:srcOffsets[0].z and
pname:srcOffsets[1].z. If the pname:filter parameter is
ename:VK_FILTER_LINEAR then the value sampled from the source image is taken
by doing linear filtering using the interpolated z coordinate. If
pname:filter parameter is ename:VK_FILTER_NEAREST then value sampled from
the source image is taken from the single nearest slice (with undefined
rounding mode).
If fname:vkCmdBlitImage is used on images of different formats, the
following conversion rules apply:
* Integer formats can: only be converted to other integer formats with the
same signedness.
* No format conversion is supported between depth/stencil images - the
formats must: match.
* Format conversions on unorm, snorm, unscaled and packed float formats of
the copied aspect of the image are performed by first converting the
pixels to float values.
* In case of sRGB source format, nonlinear RGB values are converted to
linear representation prior to filtering.
* After filtering, the float values are first clamped and then cast to the
destination image format. In case of sRGB destination format, linear RGB
values are converted to nonlinear representation before writing the
pixel to the image.
Signed and unsigned integers are converted by first clamping to the
representable range of the destination format, then casting the value.
[[copies-resolve]]
== Resolving Multisample Images
To resolve a multisample image to a non-multisample image, call:
include::../protos/vkCmdResolveImage.txt[]
* pname:commandBuffer is the command buffer into which the command will be
recorded.
* pname:srcImage is the source image.
* pname:srcImageLayout is the layout of the source image subresources for
the resolve.
* pname:dstImage is the destination image.
* pname:dstImageLayout is the layout of the destination image subresources
for the resolve.
* pname:regionCount is the number of regions to resolve.
* pname:pRegions is a pointer to an array of slink:VkImageResolve
structures specifying the regions to resolve.
include::../validity/protos/vkCmdResolveImage.txt[]
The sname:VkImageResolve structure is defined as:
include::../structs/VkImageResolve.txt[]
* pname:srcSubresource and pname:dstSubresource are
slink:VkImageSubresourceLayers structures specifying the image
subresources of the images used for the source and destination image
data, respectively. Resolve of depth/stencil images is not supported.
* pname:srcOffset and pname:dstOffset select the initial x, y, and z
offsets in texels of the sub-regions of the source and destination image
data.
* pname:extent is the size in texels of the source image to resolve in
pname:width, pname:height and pname:depth. 1D images use only pname:x
and pname:width. 2D images use pname:x, pname:y, pname:width and
pname:height. 3D images use pname:x, pname:y, pname:z, pname:width,
pname:height and pname:depth.
include::../validity/structs/VkImageResolve.txt[]
During the resolve the samples corresponding to each pixel location in the
source are converted to a single sample before being written to the
destination. If the source formats are floating-point or normalized types,
the sample values for each pixel are resolved in an implementation-dependent
manner. If the source formats are integer types, a single sample's value is
selected for each pixel.
pname:srcOffset and pname:dstOffset select the initial x, y, and z
offsets in texels of the sub-regions of the source and destination image
data. pname:extent is the size in texels of the source
image to resolve in pname:width, pname:height and pname:depth. 1D images use
only pname:x and pname:width. 2D images use pname:x, pname:y, pname:width
and pname:height. 3D images use pname:x, pname:y, pname:z, pname:width,
pname:height and pname:depth.
Resolves are done layer by layer starting with pname:baseArrayLayer member
of pname:srcSubresource for the source and pname:dstSubresource for the
destination. pname:layerCount layers are resolved to the destination image.