Vulkan-Docs/chapters/descriptorsets.txt

3553 lines
159 KiB
Plaintext

// Copyright (c) 2015-2018 Khronos Group. This work is licensed under a
// Creative Commons Attribution 4.0 International License; see
// http://creativecommons.org/licenses/by/4.0/
[[descriptorsets]]
= Resource Descriptors
A _descriptor_ is an opaque data structure representing a shader resource
such as a buffer, buffer view, image view, sampler, or combined image
sampler.
Descriptors are organised into _descriptor sets_, which are bound during
command recording for use in subsequent draw commands.
The arrangement of content in each descriptor set is determined by a
_descriptor set layout_, which determines what descriptors can be stored
within it.
The sequence of descriptor set layouts that can: be used by a pipeline is
specified in a _pipeline layout_.
Each pipeline object can: use up to pname:maxBoundDescriptorSets (see
<<features-limits, Limits>>) descriptor sets.
Shaders access resources via variables decorated with a descriptor set and
binding number that link them to a descriptor in a descriptor set.
The shader interface mapping to bound descriptor sets is described in the
<<interfaces-resources, Shader Resource Interface>> section.
[[descriptorsets-types]]
== Descriptor Types
There are a number of different types of descriptor supported by Vulkan,
corresponding to different resources or usage.
The following sections describe the API definitions of each descriptor type.
The mapping of each type to SPIR-V is listed in the
<<interfaces-resources-correspondence, Shader Resource and Descriptor Type
Correspondence>> and <<interfaces-resources-storage-class-correspondence
Shader Resource and Storage Class Correspondence>> tables in the
<<interfaces, Shader Interfaces>> chapter.
[[descriptorsets-storageimage]]
=== Storage Image
A _storage image_ (ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor
type associated with an <<resources-images, image resource>> via an
<<resources-image-views, image view>> that load, store, and atomic
operations can: be performed on.
Storage image loads are supported in all shader stages for image formats
which report support for the
<<features-formats-properties,ename:VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT>>
feature bit via flink:vkGetPhysicalDeviceFormatProperties in
slink:VkFormatProperties::pname:linearTilingFeatures (for images with linear
tiling) or slink:VkFormatProperties::pname:optimalTilingFeatures (for images
with optimal tiling).
Stores to storage images are supported in compute shaders for image formats
which report support for the ename:VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT
feature via flink:vkGetPhysicalDeviceFormatProperties in
slink:VkFormatProperties::pname:linearTilingFeatures (for images with linear
tiling) or slink:VkFormatProperties::pname:optimalTilingFeatures (for images
with optimal tiling).
Atomic operations on storage images are supported in compute shaders for
image formats which report support for the
<<features-formats-properties,ename:VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT>>
feature via flink:vkGetPhysicalDeviceFormatProperties in
slink:VkFormatProperties::pname:linearTilingFeatures (for images with linear
tiling) or slink:VkFormatProperties::pname:optimalTilingFeatures (for images
with optimal tiling).
When the <<features-features-fragmentStoresAndAtomics,
pname:fragmentStoresAndAtomics>> feature is enabled, stores and atomic
operations are also supported for storage images in fragment shaders with
the same set of image formats as supported in compute shaders.
When the <<features-features-vertexPipelineStoresAndAtomics,
pname:vertexPipelineStoresAndAtomics>> feature is enabled, stores and atomic
operations are also supported in vertex, tessellation, and geometry shaders
with the same set of image formats as supported in compute shaders.
The image subresources for a storage image must: be in the
ifdef::VK_KHR_shared_presentable_image[]
ename:VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR or
endif::VK_KHR_shared_presentable_image[]
ename:VK_IMAGE_LAYOUT_GENERAL layout in order to access its data in a
shader.
[[descriptorsets-sampler]]
=== Sampler
A _sampler descriptor_ (ename:VK_DESCRIPTOR_TYPE_SAMPLER) is a descriptor
type associated with a <<samplers,sampler>> object, used to control the
behaviour of <<textures,sampling operations>> performed on a
<<descriptorsets-sampledimage, sampled image>>.
[[descriptorsets-sampledimage]]
=== Sampled Image
A _sampled image_ (ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE) is a descriptor
type associated with an <<resources-images, image resource>> via an
<<resources-image-views, image view>> that <<textures,sampling operations>>
can: be performed on.
Shaders combine a sampled image variable and a sampler variable to perform
sampling operations.
Sampled images are supported in all shader stages for image formats which
report support for the
<<features-formats-properties,ename:VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT>>
feature bit via flink:vkGetPhysicalDeviceFormatProperties in
slink:VkFormatProperties::pname:linearTilingFeatures (for images with linear
tiling) or slink:VkFormatProperties::pname:optimalTilingFeatures (for images
with optimal tiling).
The image subresources for a sampled image must: be in the
ifdef::VK_KHR_shared_presentable_image[]
ename:VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
endif::VK_KHR_shared_presentable_image[]
ifdef::VK_VERSION_1_1,VK_KHR_maintenance2[]
ename:VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
ename:VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
endif::VK_VERSION_1_1,VK_KHR_maintenance2[]
ename:VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
ename:VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, or
ename:VK_IMAGE_LAYOUT_GENERAL layout in order to access its data in a
shader.
[[descriptorsets-combinedimagesampler]]
=== Combined Image Sampler
A _combined image sampler_ (ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
is a single descriptor type associated with both a <<samplers,sampler>> and
an <<resources-images,image resource>>, combining both a
<<descriptorsets-sampler,sampler>> and <<descriptorsets-sampledimage,
sampled image>> descriptor into a single descriptor.
ifdef::VK_VERSION_1_1,VK_KHR_sampler_ycbcr_conversion[]
If the descriptor refers to a sampler that performs
<<samplers-YCbCr-conversion,Y'C~B~C~R~ conversion>>, the sampler must: only
be used to sample the image in the same descriptor.
Otherwise, the
endif::VK_VERSION_1_1,VK_KHR_sampler_ycbcr_conversion[]
ifndef::VK_VERSION_1_1,VK_KHR_sampler_ycbcr_conversion[]
The
endif::VK_VERSION_1_1,VK_KHR_sampler_ycbcr_conversion[]
sampler and image in this type of descriptor can: be used freely with any
other samplers and images.
The image subresources for a combined image sampler must: be in the
ifdef::VK_KHR_shared_presentable_image[]
ename:VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
endif::VK_KHR_shared_presentable_image[]
ifdef::VK_VERSION_1_1,VK_KHR_maintenance2[]
ename:VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
ename:VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
endif::VK_VERSION_1_1,VK_KHR_maintenance2[]
ename:VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
ename:VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, or
ename:VK_IMAGE_LAYOUT_GENERAL layout in order to access its data in a
shader.
[NOTE]
.Note
====
On some implementations, it may: be more efficient to sample from an image
using a combination of sampler and sampled image that are stored together in
the descriptor set in a combined descriptor.
====
[[descriptorsets-uniformtexelbuffer]]
=== Uniform Texel Buffer
A _uniform texel buffer_ (ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) is
a descriptor type associated with a <<resources-buffers,buffer resource>>
via a <<resources-buffer-views, buffer view>> that <<textures,formatted load
operations>> can: be performed on.
Uniform texel buffers define a tightly-packed 1-dimensional linear array of
texels, with texels going through format conversion when read in a shader in
the same way as they are for an image.
Load operations from uniform texel buffers are supported in all shader
stages for image formats which report support for the
<<features-formats-properties,ename:VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT>>
feature bit via flink:vkGetPhysicalDeviceFormatProperties in
slink:VkFormatProperties::pname:bufferFeatures.
[[descriptorsets-storagetexelbuffer]]
=== Storage Texel Buffer
A _storage texel buffer_ (ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER) is
a descriptor type associated with a <<resources-buffers,buffer resource>>
via a <<resources-buffer-views, buffer view>> that <<textures,formatted
load, store, and atomic operations>> can: be performed on.
Storage texel buffers define a tightly-packed 1-dimensional linear array of
texels, with texels going through format conversion when read in a shader in
the same way as they are for an image.
Unlike <<descriptorsets-uniformtexelbuffer,uniform texel buffers>>, these
buffers can also be written to in the same way as for
<<descriptorsets-storageimage, storage images>>.
Storage texel buffer loads are supported in all shader stages for texel
buffer formats which report support for the
<<features-formats-properties,ename:VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT>>
feature bit via flink:vkGetPhysicalDeviceFormatProperties in
slink:VkFormatProperties::pname:bufferFeatures.
Stores to storage texel buffers are supported in compute shaders for texel
buffer formats which report support for the
ename:VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT feature via
flink:vkGetPhysicalDeviceFormatProperties in
slink:VkFormatProperties::pname:bufferFeatures.
Atomic operations on storage texel buffers are supported in compute shaders
for texel buffer formats which report support for the
<<features-formats-properties,ename:VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT>>
feature via flink:vkGetPhysicalDeviceFormatProperties in
slink:VkFormatProperties::pname:bufferFeatures.
When the <<features-features-fragmentStoresAndAtomics,
pname:fragmentStoresAndAtomics>> feature is enabled, stores and atomic
operations are also supported for storage texel buffers in fragment shaders
with the same set of texel buffer formats as supported in compute shaders.
When the <<features-features-vertexPipelineStoresAndAtomics,
pname:vertexPipelineStoresAndAtomics>> feature is enabled, stores and atomic
operations are also supported in vertex, tessellation, and geometry shaders
with the same set of texel buffer formats as supported in compute shaders.
[[descriptorsets-storagebuffer]]
=== Storage Buffer
A _storage buffer_ (ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) is a descriptor
type associated with a <<resources-buffers,buffer resource>> directly,
described in a shader as a structure with various members that load, store,
and atomic operations can: be performed on.
[NOTE]
.Note
====
Atomic operations can: only be performed on members of certain types as
defined in the <<spirvenv, SPIR-V environment appendix>>.
====
[[descriptorsets-uniformbuffer]]
=== Uniform Buffer
A _uniform buffer_ (ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) is a descriptor
type associated with a <<resources-buffers,buffer resource>> directly,
described in a shader as a structure with various members that load
operations can: be performed on.
[[descriptorsets-uniformbufferdynamic]]
=== Dynamic Uniform Buffer
A _dynamic uniform buffer_ (ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
is almost identical to a <<descriptorsets-uniformbuffer, uniform buffer>>,
and differs only in how the offset into the buffer is specified.
The base offset calculated by the slink:VkDescriptorBufferInfo when
initially <<descriptorsets-updates, updating the descriptor set>> is added
to a <<descriptorsets-binding-dynamicoffsets, dynamic offset>> when binding
the descriptor set.
[[descriptorsets-storagebufferdynamic]]
=== Dynamic Storage Buffer
A _dynamic storage buffer_ (ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC)
is almost identical to a <<descriptorsets-storagebuffer, storage buffer>>,
and differs only in how the offset into the buffer is specified.
The base offset calculated by the slink:VkDescriptorBufferInfo when
initially <<descriptorsets-updates, updating the descriptor set>> is added
to a <<descriptorsets-binding-dynamicoffsets, dynamic offset>> when binding
the descriptor set.
[[descriptorsets-inputattachment]]
=== Input Attachment
An _input attachment_ (ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) is a
descriptor type associated with an <<resources-images, image resource>> via
an <<resources-image-views, image view>> that can: be used for
<<synchronization-framebuffer-regions,framebuffer local>> load operations in
fragment shaders.
All image formats that are supported for color attachments
(ename:VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) or depth/stencil attachments
(ename:VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) for a given image
tiling mode are also supported for input attachments.
The image subresources for an input attachment must: be in the
ifdef::VK_KHR_shared_presentable_image[]
ename:VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
endif::VK_KHR_shared_presentable_image[]
ifdef::VK_VERSION_1_1,VK_KHR_maintenance2[]
ename:VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
ename:VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
endif::VK_VERSION_1_1,VK_KHR_maintenance2[]
ename:VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
ename:VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, or
ename:VK_IMAGE_LAYOUT_GENERAL layout in order to access its data in a
shader.
[[descriptorsets-sets]]
== Descriptor Sets
Descriptors are grouped together into descriptor set objects.
A descriptor set object is an opaque object that contains storage for a set
of descriptors, where the types and number of descriptors is defined by a
descriptor set layout.
The layout object may: be used to define the association of each descriptor
binding with memory or other implementation resources.
The layout is used both for determining the resources that need to be
associated with the descriptor set, and determining the interface between
shader stages and shader resources.
[[descriptorsets-setlayout]]
=== Descriptor Set Layout
[open,refpage='VkDescriptorSetLayout',desc='Opaque handle to a descriptor set layout object',type='handles']
--
A descriptor set layout object is defined by an array of zero or more
descriptor bindings.
Each individual descriptor binding is specified by a descriptor type, a
count (array size) of the number of descriptors in the binding, a set of
shader stages that can: access the binding, and (if using immutable
samplers) an array of sampler descriptors.
Descriptor set layout objects are represented by sname:VkDescriptorSetLayout
handles:
include::../api/handles/VkDescriptorSetLayout.txt[]
--
[open,refpage='vkCreateDescriptorSetLayout',desc='Create a new descriptor set layout',type='protos']
--
To create descriptor set layout objects, call:
include::../api/protos/vkCreateDescriptorSetLayout.txt[]
* pname:device is the logical device that creates the descriptor set
layout.
* pname:pCreateInfo is a pointer to an instance of the
slink:VkDescriptorSetLayoutCreateInfo structure specifying the state of
the descriptor set layout object.
* pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
* pname:pSetLayout points to a slink:VkDescriptorSetLayout handle in which
the resulting descriptor set layout object is returned.
include::../validity/protos/vkCreateDescriptorSetLayout.txt[]
--
[open,refpage='VkDescriptorSetLayoutCreateInfo',desc='Structure specifying parameters of a newly created descriptor set layout',type='structs']
--
Information about the descriptor set layout is passed in an instance of the
sname:VkDescriptorSetLayoutCreateInfo structure:
include::../api/structs/VkDescriptorSetLayoutCreateInfo.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:flags is a bitmask
ifdef::VK_KHR_push_descriptor[]
of elink:VkDescriptorSetLayoutCreateFlagBits
endif::VK_KHR_push_descriptor[]
specifying options for descriptor set layout creation.
* pname:bindingCount is the number of elements in pname:pBindings.
* pname:pBindings is a pointer to an array of
slink:VkDescriptorSetLayoutBinding structures.
.Valid Usage
****
* [[VUID-VkDescriptorSetLayoutCreateInfo-binding-00279]]
The slink:VkDescriptorSetLayoutBinding::pname:binding members of the
elements of the pname:pBindings array must: each have different values.
ifdef::VK_KHR_push_descriptor[]
* [[VUID-VkDescriptorSetLayoutCreateInfo-flags-00280]]
If pname:flags contains
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, then all
elements of pname:pBindings must: not have a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
* [[VUID-VkDescriptorSetLayoutCreateInfo-flags-00281]]
If pname:flags contains
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, then the
total number of elements of all bindings must: be less than or equal to
slink:VkPhysicalDevicePushDescriptorPropertiesKHR::pname:maxPushDescriptors
endif::VK_KHR_push_descriptor[]
ifdef::VK_EXT_descriptor_indexing[]
* [[VUID-VkDescriptorSetLayoutCreateInfo-flags-03000]]
If any binding has the
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT bit set,
pname:flags must: include
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT
* [[VUID-VkDescriptorSetLayoutCreateInfo-descriptorType-03001]]
If any binding has the
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT bit set, then all
bindings must: not have pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
endif::VK_EXT_descriptor_indexing[]
****
include::../validity/structs/VkDescriptorSetLayoutCreateInfo.txt[]
--
[open,refpage='VkDescriptorSetLayoutCreateFlagBits',desc='Bitmask specifying descriptor set layout properties',type='enums']
--
Bits which can: be set in slink:VkDescriptorSetLayoutCreateInfo::pname:flags
to specify options for descriptor set layout are:
include::../api/enums/VkDescriptorSetLayoutCreateFlagBits.txt[]
ifdef::VK_KHR_push_descriptor[]
* ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR specifies
that descriptor sets must: not be allocated using this layout, and
descriptors are instead pushed by flink:vkCmdPushDescriptorSetKHR.
endif::VK_KHR_push_descriptor[]
ifdef::VK_EXT_descriptor_indexing[]
* ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT
specifies that descriptor sets using this layout must: be allocated from
a descriptor pool created with the
ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT bit set.
Descriptor set layouts created with this bit set have alternate limits
for the maximum number of descriptors per-stage and per-pipeline layout.
The non-UpdateAfterBind limits only count descriptors in sets created
without this flag.
The UpdateAfterBind limits count all descriptors, but the limits may: be
higher than the non-UpdateAfterBind limits.
endif::VK_EXT_descriptor_indexing[]
ifndef::VK_KHR_push_descriptor[]
[NOTE]
.Note
====
All bits for this type are defined by extensions, and none of those
extensions are enabled in this build of the specification.
====
endif::VK_KHR_push_descriptor[]
--
[open,refpage='VkDescriptorSetLayoutCreateFlags',desc='Bitmask of VkDescriptorSetLayoutCreateFlagBits',type='enums']
--
include::../api/flags/VkDescriptorSetLayoutCreateFlags.txt[]
sname:VkDescriptorSetLayoutCreateFlags is a bitmask type for setting a mask
of zero or more slink:VkDescriptorSetLayoutCreateFlagBits.
--
[open,refpage='VkDescriptorSetLayoutBinding',desc='Structure specifying a descriptor set layout binding',type='structs']
--
The sname:VkDescriptorSetLayoutBinding structure is defined as:
include::../api/structs/VkDescriptorSetLayoutBinding.txt[]
* pname:binding is the binding number of this entry and corresponds to a
resource of the same binding number in the shader stages.
* pname:descriptorType is a elink:VkDescriptorType specifying which type
of resource descriptors are used for this binding.
* pname:descriptorCount is the number of descriptors contained in the
binding, accessed in a shader as an array.
If pname:descriptorCount is zero this binding entry is reserved and the
resource must: not be accessed from any stage via this binding within
any pipeline using the set layout.
* pname:stageFlags member is a bitmask of elink:VkShaderStageFlagBits
specifying which pipeline shader stages can: access a resource for this
binding.
ename:VK_SHADER_STAGE_ALL is a shorthand specifying that all defined
shader stages, including any additional stages defined by extensions,
can: access the resource.
+
If a shader stage is not included in pname:stageFlags, then a resource must:
not be accessed from that stage via this binding within any pipeline using
the set layout.
Other than input attachments which are limited to the fragment shader, there
are no limitations on what combinations of stages can: use a descriptor
binding, and in particular a binding can: be used by both graphics stages
and the compute stage.
* pname:pImmutableSamplers affects initialization of samplers.
If pname:descriptorType specifies a ename:VK_DESCRIPTOR_TYPE_SAMPLER or
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
pname:pImmutableSamplers can: be used to initialize a set of _immutable
samplers_.
Immutable samplers are permanently bound into the set layout; later
binding a sampler into an immutable sampler slot in a descriptor set is
not allowed.
If pname:pImmutableSamplers is not `NULL`, then it is considered to be a
pointer to an array of sampler handles that will be consumed by the set
layout and used for the corresponding binding.
If pname:pImmutableSamplers is `NULL`, then the sampler slots are
dynamic and sampler handles must: be bound into descriptor sets using
this layout.
If pname:descriptorType is not one of these descriptor types, then
pname:pImmutableSamplers is ignored.
The above layout definition allows the descriptor bindings to be specified
sparsely such that not all binding numbers between 0 and the maximum binding
number need to be specified in the pname:pBindings array.
Bindings that are not specified have a pname:descriptorCount and
pname:stageFlags of zero, and the pname:descriptorType is treated as
undefined.
However, all binding numbers between 0 and the maximum binding number in the
slink:VkDescriptorSetLayoutCreateInfo::pname:pBindings array may: consume
memory in the descriptor set layout even if not all descriptor bindings are
used, though it should: not consume additional memory from the descriptor
pool.
[NOTE]
.Note
====
The maximum binding number specified should: be as compact as possible to
avoid wasted memory.
====
.Valid Usage
****
* [[VUID-VkDescriptorSetLayoutBinding-descriptorType-00282]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_SAMPLER or
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and
pname:descriptorCount is not `0` and pname:pImmutableSamplers is not
`NULL`, pname:pImmutableSamplers must: be a valid pointer to an array of
pname:descriptorCount valid sname:VkSampler handles
* [[VUID-VkDescriptorSetLayoutBinding-descriptorCount-00283]]
If pname:descriptorCount is not `0`, pname:stageFlags must: be a valid
combination of elink:VkShaderStageFlagBits values
* [[VUID-VkDescriptorSetLayoutBinding-descriptorType-01510]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT and
pname:descriptorCount is not `0`, then pname:stageFlags must: be `0` or
ename:VK_SHADER_STAGE_FRAGMENT_BIT
****
include::../validity/structs/VkDescriptorSetLayoutBinding.txt[]
--
ifdef::VK_EXT_descriptor_indexing[]
[open,refpage='VkDescriptorSetLayoutBindingFlagsCreateInfoEXT',desc='Structure specifying creation flags for descriptor set layout bindings',type='structs']
--
If the pname:pNext chain of a slink:VkDescriptorSetLayoutCreateInfo
structure includes a sname:VkDescriptorSetLayoutBindingFlagsCreateInfoEXT
structure, then that structure includes an array of flags, one for each
descriptor set layout binding.
The slink:VkDescriptorSetLayoutBindingFlagsCreateInfoEXT structure is
defined as:
include::../api/structs/VkDescriptorSetLayoutBindingFlagsCreateInfoEXT.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:bindingCount is zero or the number of elements in
pname:pBindingFlags.
* pname:pBindingFlags is a pointer to an array of
elink:VkDescriptorBindingFlagsEXT bitfields, one for each descriptor set
layout binding.
If pname:bindingCount is zero or if this structure is not in the pname:pNext
chain, the elink:VkDescriptorBindingFlagsEXT for each descriptor set layout
binding is considered to be zero.
Otherwise, the descriptor set layout binding at
slink:VkDescriptorSetLayoutCreateInfo::pname:pBindings[i] uses the flags in
pname:pBindingFlags[i].
.Valid Usage
****
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-bindingCount-03002]]
If pname:bindingCount is not zero, pname:bindingCount must: equal
slink:VkDescriptorSetLayoutCreateInfo::pname:bindingCount
ifdef::VK_KHR_push_descriptor[]
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-flags-03003]]
If slink:VkDescriptorSetLayoutCreateInfo::pname:flags includes
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, then all
elements of pname:pBindingFlags must: not include
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT,
ename:VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT, or
ename:VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
endif::VK_KHR_push_descriptor[]
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-pBindingFlags-03004]]
If an element of pname:pBindingFlags includes
ename:VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT, then all
other elements of slink:VkDescriptorSetLayoutCreateInfo::pname:pBindings
must: have a smaller value of pname:binding
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingUniformBufferUpdateAfterBind-03005]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingUniformBufferUpdateAfterBind
is not enabled, all bindings with descriptor type
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER must: not use
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingSampledImageUpdateAfterBind-03006]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingSampledImageUpdateAfterBind
is not enabled, all bindings with descriptor type
ename:VK_DESCRIPTOR_TYPE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must: not use
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingStorageImageUpdateAfterBind-03007]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingStorageImageUpdateAfterBind
is not enabled, all bindings with descriptor type
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must: not use
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingStorageBufferUpdateAfterBind-03008]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingStorageBufferUpdateAfterBind
is not enabled, all bindings with descriptor type
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER must: not use
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingUniformTexelBufferUpdateAfterBind-03009]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingUniformTexelBufferUpdateAfterBind
is not enabled, all bindings with descriptor type
ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must: not use
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingStorageTexelBufferUpdateAfterBind-03010]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingStorageTexelBufferUpdateAfterBind
is not enabled, all bindings with descriptor type
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must: not use
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-None-03011]]
All bindings with descriptor type
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must: not use
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingUpdateUnusedWhilePending-03012]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingUpdateUnusedWhilePending
is not enabled, all elements of pname:pBindingFlags must: not include
ename:VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingPartiallyBound-03013]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingPartiallyBound
is not enabled, all elements of pname:pBindingFlags must: not include
ename:VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingVariableDescriptorCount-03014]]
If
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingVariableDescriptorCount
is not enabled, all elements of pname:pBindingFlags must: not include
ename:VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
* [[VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-pBindingFlags-03015]]
If an element of pname:pBindingFlags includes
ename:VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT, that
element's pname:descriptorType must: not be
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
****
include::../validity/structs/VkDescriptorSetLayoutBindingFlagsCreateInfoEXT.txt[]
--
[open,refpage='VkDescriptorBindingFlagBitsEXT',desc='Bitmask specifying descriptor set layout binding properties',type='enums']
--
Bits which can: be set in each element of
slink:VkDescriptorSetLayoutBindingFlagsCreateInfoEXT::pname:pBindingFlags to
specify options for the corresponding descriptor set layout binding are:
include::../api/enums/VkDescriptorBindingFlagBitsEXT.txt[]
* ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT indicates that if
descriptors in this binding are updated between when the descriptor set
is bound in a command buffer and when that command buffer is submitted
to a queue, then the submission will use the most recently set
descriptors for this binding and the updates do not invalidate the
command buffer.
Descriptor bindings created with this flag are also partially exempt
from the external synchronization requirement in
ifdef::VK_KHR_descriptor_update_template[]
flink:vkUpdateDescriptorSetWithTemplateKHR and
endif::VK_KHR_descriptor_update_template[]
flink:vkUpdateDescriptorSets.
They can: be updated concurrently with the set being bound to a command
buffer in another thread, but not concurrently with the set being reset
or freed.
* ename:VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT indicates that
descriptors in this binding that are not _dynamically used_ need not
contain valid descriptors at the time the descriptors are consumed.
A descriptor is dynamically used if any shader invocation executes an
instruction that performs any memory access using the descriptor.
* ename:VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT
indicates that descriptors in this binding can: be updated after a
command buffer has bound this descriptor set, or while a command buffer
that uses this descriptor set is pending execution, as long as the
descriptors that are updated are not used by those command buffers.
If ename:VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT is also set, then
descriptors can: be updated as long as they are not dynamically used by
any shader invocations.
If ename:VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT is not set, then
descriptors can: be updated as long as they are not statically used by
any shader invocations.
* ename:VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT indicates
that this descriptor binding has a variable size that will be specified
when a descriptor set is allocated using this layout.
The value of pname:descriptorCount is treated as an upper bound on the
size of the binding.
This must: only be used for the last binding in the descriptor set
layout (i.e. the binding with the largest value of pname:binding).
For the purposes of counting against limits such as
pname:maxDescriptorSet* and pname:maxPerStageDescriptor*, the full value
of pname:descriptorCount is counted.
[NOTE]
.Note
====
Note that while ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT and
ename:VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT both involve
updates to descriptor sets after they are bound,
ename:VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT is a weaker
requirement since it is only about descriptors that are not used, whereas
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT requires the
implementation to observe updates to descriptors that are used.
====
--
endif::VK_EXT_descriptor_indexing[]
ifdef::VK_VERSION_1_1,VK_KHR_maintenance3[]
[open,refpage='vkGetDescriptorSetLayoutSupport',desc='Query whether a descriptor set layout can be created',type='protos']
--
To query information about whether a descriptor set layout can: be created,
call:
ifdef::VK_VERSION_1_1[]
include::../api/protos/vkGetDescriptorSetLayoutSupport.txt[]
endif::VK_VERSION_1_1[]
ifdef::VK_VERSION_1_1+VK_KHR_maintenance3[or the equivalent command]
ifdef::VK_KHR_maintenance3[]
include::../api/protos/vkGetDescriptorSetLayoutSupportKHR.txt[]
endif::VK_KHR_maintenance3[]
* pname:device is the logical device that would create the descriptor set
layout.
* pname:pCreateInfo is a pointer to an instance of the
slink:VkDescriptorSetLayoutCreateInfo structure specifying the state of
the descriptor set layout object.
* pname:pSupport points to a slink:VkDescriptorSetLayoutSupport structure
in which information about support for the descriptor set layout object
is returned.
Some implementations have limitations on what fits in a descriptor set which
are not easily expressible in terms of existing limits like
pname:maxDescriptorSet*, for example if all descriptor types share a limited
space in memory but each descriptor is a different size or alignment.
This command returns information about whether a descriptor set satisfies
this limit.
If the descriptor set layout satisfies the
slink:VkPhysicalDeviceMaintenance3Properties::pname:maxPerSetDescriptors
limit, this command is guaranteed to return ename:VK_TRUE in
slink:VkDescriptorSetLayoutSupport::pname:supported.
If the descriptor set layout exceeds the
slink:VkPhysicalDeviceMaintenance3Properties::pname:maxPerSetDescriptors
limit, whether the descriptor set layout is supported is
implementation-dependent and may: depend on whether the descriptor sizes and
alignments cause the layout to exceed an internal limit.
This command does not consider other limits such as
pname:maxPerStageDescriptor*, and so a descriptor set layout that is
supported according to this command must: still satisfy the pipeline layout
limits such as pname:maxPerStageDescriptor* in order to be used in a
pipeline layout.
[NOTE]
.Note
====
This is a sname:VkDevice query rather than sname:VkPhysicalDevice because
the answer may: depend on enabled features.
====
include::../validity/protos/vkGetDescriptorSetLayoutSupport.txt[]
--
[open,refpage='VkDescriptorSetLayoutSupport',desc='Structure returning information about whether a descriptor set layout can be supported',type='structs']
--
Information about support for the descriptor set layout is returned in an
instance of the sname:VkDescriptorSetLayoutSupport structure:
include::../api/structs/VkDescriptorSetLayoutSupport.txt[]
ifdef::VK_KHR_maintenance3[]
or the equivalent
include::../api/structs/VkDescriptorSetLayoutSupportKHR.txt[]
endif::VK_KHR_maintenance3[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:supported specifies whether the descriptor set layout can: be
created.
pname:supported is set to ename:VK_TRUE if the descriptor set can: be
created, or else is set to ename:VK_FALSE.
include::../validity/structs/VkDescriptorSetLayoutSupport.txt[]
--
endif::VK_VERSION_1_1,VK_KHR_maintenance3[]
ifdef::VK_EXT_descriptor_indexing[]
[open,refpage='VkDescriptorSetVariableDescriptorCountLayoutSupportEXT',desc='Structure returning information about whether a descriptor set layout can be supported',type='structs']
--
If the pname:pNext chain of a slink:VkDescriptorSetLayoutSupport structure
includes a sname:VkDescriptorSetVariableDescriptorCountLayoutSupportEXT
structure, then that structure returns additional information about whether
the descriptor set layout is supported.
include::../api/structs/VkDescriptorSetVariableDescriptorCountLayoutSupportEXT.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:maxVariableDescriptorCount indicates the maximum number of
descriptors supported in the highest numbered binding of the layout, if
that binding is variable-sized.
If the create info includes a variable-sized descriptor, then
pname:supported is determined assuming the requested size of the
variable-sized descriptor, and pname:maxVariableDescriptorCount is set to
the maximum size of that descriptor that can: be successfully created (which
is greater than or equal to the requested size passed in).
If the create info does not include a variable-sized descriptor or if the
slink:VkPhysicalDeviceDescriptorIndexingFeaturesEXT::pname:descriptorBindingVariableDescriptorCount
feature is not enabled, then pname:maxVariableDescriptorCount is set to
zero.
For the purposes of this command, a variable-sized descriptor binding with a
pname:descriptorCount of zero is treated as if the pname:descriptorCount is
one, and thus the binding is not ignored and the maximum descriptor count
will be returned.
If the layout is not supported, then the value written to
pname:maxVariableDescriptorCount is undefined.
include::../validity/structs/VkDescriptorSetVariableDescriptorCountLayoutSupportEXT.txt[]
--
endif::VK_EXT_descriptor_indexing[]
The following examples show a shader snippet using two descriptor sets, and
application code that creates corresponding descriptor set layouts.
.GLSL example
[source,glsl]
---------------------------------------------------
//
// binding to a single sampled image descriptor in set 0
//
layout (set=0, binding=0) uniform texture2D mySampledImage;
//
// binding to an array of sampled image descriptors in set 0
//
layout (set=0, binding=1) uniform texture2D myArrayOfSampledImages[12];
//
// binding to a single uniform buffer descriptor in set 1
//
layout (set=1, binding=0) uniform myUniformBuffer
{
vec4 myElement[32];
};
---------------------------------------------------
.SPIR-V example
[source,spirv]
---------------------------------------------------
...
%1 = OpExtInstImport "GLSL.std.450"
...
OpName %9 "mySampledImage"
OpName %14 "myArrayOfSampledImages"
OpName %18 "myUniformBuffer"
OpMemberName %18 0 "myElement"
OpName %20 ""
OpDecorate %9 DescriptorSet 0
OpDecorate %9 Binding 0
OpDecorate %14 DescriptorSet 0
OpDecorate %14 Binding 1
OpDecorate %17 ArrayStride 16
OpMemberDecorate %18 0 Offset 0
OpDecorate %18 Block
OpDecorate %20 DescriptorSet 1
OpDecorate %20 Binding 0
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant
%10 = OpTypeInt 32 0
%11 = OpConstant %10 12
%12 = OpTypeArray %7 %11
%13 = OpTypePointer UniformConstant %12
%14 = OpVariable %13 UniformConstant
%15 = OpTypeVector %6 4
%16 = OpConstant %10 32
%17 = OpTypeArray %15 %16
%18 = OpTypeStruct %17
%19 = OpTypePointer Uniform %18
%20 = OpVariable %19 Uniform
...
---------------------------------------------------
.API example
[source,c++]
---------------------------------------------------
VkResult myResult;
const VkDescriptorSetLayoutBinding myDescriptorSetLayoutBinding[] =
{
// binding to a single image descriptor
{
0, // binding
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, // descriptorType
1, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags
NULL // pImmutableSamplers
},
// binding to an array of image descriptors
{
1, // binding
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, // descriptorType
12, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags
NULL // pImmutableSamplers
},
// binding to a single uniform buffer descriptor
{
0, // binding
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, // descriptorType
1, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags
NULL // pImmutableSamplers
}
};
const VkDescriptorSetLayoutCreateInfo myDescriptorSetLayoutCreateInfo[] =
{
// Create info for first descriptor set with two descriptor bindings
{
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, // sType
NULL, // pNext
0, // flags
2, // bindingCount
&myDescriptorSetLayoutBinding[0] // pBindings
},
// Create info for second descriptor set with one descriptor binding
{
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, // sType
NULL, // pNext
0, // flags
1, // bindingCount
&myDescriptorSetLayoutBinding[2] // pBindings
}
};
VkDescriptorSetLayout myDescriptorSetLayout[2];
//
// Create first descriptor set layout
//
myResult = vkCreateDescriptorSetLayout(
myDevice,
&myDescriptorSetLayoutCreateInfo[0],
NULL,
&myDescriptorSetLayout[0]);
//
// Create second descriptor set layout
//
myResult = vkCreateDescriptorSetLayout(
myDevice,
&myDescriptorSetLayoutCreateInfo[1],
NULL,
&myDescriptorSetLayout[1]);
---------------------------------------------------
[open,refpage='vkDestroyDescriptorSetLayout',desc='Destroy a descriptor set layout object',type='protos']
--
To destroy a descriptor set layout, call:
include::../api/protos/vkDestroyDescriptorSetLayout.txt[]
* pname:device is the logical device that destroys the descriptor set
layout.
* pname:descriptorSetLayout is the descriptor set layout to destroy.
* pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
.Valid Usage
****
* [[VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-00284]]
If sname:VkAllocationCallbacks were provided when
pname:descriptorSetLayout was created, a compatible set of callbacks
must: be provided here
* [[VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-00285]]
If no sname:VkAllocationCallbacks were provided when
pname:descriptorSetLayout was created, pname:pAllocator must: be `NULL`
****
include::../validity/protos/vkDestroyDescriptorSetLayout.txt[]
--
[[descriptorsets-pipelinelayout]]
=== Pipeline Layouts
[open,refpage='VkPipelineLayout',desc='Opaque handle to a pipeline layout object',type='handles']
--
Access to descriptor sets from a pipeline is accomplished through a
_pipeline layout_.
Zero or more descriptor set layouts and zero or more push constant ranges
are combined to form a pipeline layout object which describes the complete
set of resources that can: be accessed by a pipeline.
The pipeline layout represents a sequence of descriptor sets with each
having a specific layout.
This sequence of layouts is used to determine the interface between shader
stages and shader resources.
Each pipeline is created using a pipeline layout.
Pipeline layout objects are represented by sname:VkPipelineLayout handles:
include::../api/handles/VkPipelineLayout.txt[]
--
[open,refpage='vkCreatePipelineLayout',desc='Creates a new pipeline layout object',type='protos']
--
To create a pipeline layout, call:
include::../api/protos/vkCreatePipelineLayout.txt[]
* pname:device is the logical device that creates the pipeline layout.
* pname:pCreateInfo is a pointer to an instance of the
slink:VkPipelineLayoutCreateInfo structure specifying the state of the
pipeline layout object.
* pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
* pname:pPipelineLayout points to a slink:VkPipelineLayout handle in which
the resulting pipeline layout object is returned.
include::../validity/protos/vkCreatePipelineLayout.txt[]
--
[open,refpage='VkPipelineLayoutCreateInfo',desc='Structure specifying the parameters of a newly created pipeline layout object',type='structs']
--
The slink:VkPipelineLayoutCreateInfo structure is defined as:
include::../api/structs/VkPipelineLayoutCreateInfo.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:flags is reserved for future use.
* pname:setLayoutCount is the number of descriptor sets included in the
pipeline layout.
* pname:pSetLayouts is a pointer to an array of
sname:VkDescriptorSetLayout objects.
* pname:pushConstantRangeCount is the number of push constant ranges
included in the pipeline layout.
* pname:pPushConstantRanges is a pointer to an array of
sname:VkPushConstantRange structures defining a set of push constant
ranges for use in a single pipeline layout.
In addition to descriptor set layouts, a pipeline layout also describes
how many push constants can: be accessed by each stage of the pipeline.
+
[NOTE]
.Note
====
Push constants represent a high speed path to modify constant data in
pipelines that is expected to outperform memory-backed resource updates.
====
.Valid Usage
****
* [[VUID-VkPipelineLayoutCreateInfo-setLayoutCount-00286]]
pname:setLayoutCount must: be less than or equal to
sname:VkPhysicalDeviceLimits::pname:maxBoundDescriptorSets
ifndef::VK_EXT_descriptor_indexing[]
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-00287]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_SAMPLER and
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible to any shader
stage across all elements of pname:pSetLayouts must: be less than or
equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorSamplers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-00288]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible to any shader
stage across all elements of pname:pSetLayouts must: be less than or
equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorUniformBuffers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-00289]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible to any shader
stage across all elements of pname:pSetLayouts must: be less than or
equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorStorageBuffers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-00290]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible to any shader
stage across all elements of pname:pSetLayouts must: be less than or
equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorSampledImages
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-00291]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible to any shader
stage across all elements of pname:pSetLayouts must: be less than or
equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorStorageImages
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01676]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible to any given shader
stage across all elements of pname:pSetLayouts must: be less than or
equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorInputAttachments
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01677]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_SAMPLER and
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetSamplers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01678]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetUniformBuffers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01679]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetUniformBuffersDynamic
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01680]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetStorageBuffers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01681]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetStorageBuffersDynamic
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01682]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetSampledImages
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01683]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetStorageImages
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-01684]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetInputAttachments
endif::VK_EXT_descriptor_indexing[]
ifdef::VK_EXT_descriptor_indexing[]
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03016]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of ename:VK_DESCRIPTOR_TYPE_SAMPLER and
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorSamplers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03017]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorUniformBuffers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03018]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorStorageBuffers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03019]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorSampledImages
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03020]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorStorageImages
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03021]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible to any given shader
stage across all elements of pname:pSetLayouts must: be less than or
equal to
sname:VkPhysicalDeviceLimits::pname:maxPerStageDescriptorInputAttachments
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03022]]
The total number of descriptors with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_SAMPLER and
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxPerStageDescriptorUpdateAfterBindSamplers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03023]]
The total number of descriptors with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxPerStageDescriptorUpdateAfterBindUniformBuffers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03024]]
The total number of descriptors with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxPerStageDescriptorUpdateAfterBindStorageBuffers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03025]]
The total number of descriptors with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxPerStageDescriptorUpdateAfterBindSampledImages
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03026]]
The total number of descriptors with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible to any given
shader stage across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxPerStageDescriptorUpdateAfterBindStorageImages
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03027]]
The total number of descriptors with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible to any given shader
stage across all elements of pname:pSetLayouts must: be less than or
equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxPerStageDescriptorUpdateAfterBindInputAttachments
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03028]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of ename:VK_DESCRIPTOR_TYPE_SAMPLER and
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetSamplers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03029]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetUniformBuffers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03030]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetUniformBuffersDynamic
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03031]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetStorageBuffers
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03032]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetStorageBuffersDynamic
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03033]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetSampledImages
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03034]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetStorageImages
* [[VUID-VkPipelineLayoutCreateInfo-descriptorType-03035]]
The total number of descriptors in descriptor set layouts created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set with a pname:descriptorType of
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceLimits::pname:maxDescriptorSetInputAttachments
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03036]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_SAMPLER and
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxDescriptorSetUpdateAfterBindSamplers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03037]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxDescriptorSetUpdateAfterBindUniformBuffers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03038]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxDescriptorSetUpdateAfterBindUniformBuffersDynamic
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03039]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxDescriptorSetUpdateAfterBindStorageBuffers
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03040]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxDescriptorSetUpdateAfterBindStorageBuffersDynamic
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03041]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxDescriptorSetUpdateAfterBindSampledImages
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03042]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible across all
shader stages and across all elements of pname:pSetLayouts must: be less
than or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxDescriptorSetUpdateAfterBindStorageImages
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03043]]
The total number of descriptors of the type
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible across all shader
stages and across all elements of pname:pSetLayouts must: be less than
or equal to
sname:VkPhysicalDeviceDescriptorIndexingPropertiesEXT::pname:maxDescriptorSetUpdateAfterBindInputAttachments
endif::VK_EXT_descriptor_indexing[]
* [[VUID-VkPipelineLayoutCreateInfo-pPushConstantRanges-00292]]
Any two elements of pname:pPushConstantRanges must: not include the same
stage in pname:stageFlags
ifdef::VK_KHR_push_descriptor[]
* [[VUID-VkPipelineLayoutCreateInfo-pSetLayouts-00293]]
pname:pSetLayouts must: not contain more than one descriptor set layout
that was created with
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR set
endif::VK_KHR_push_descriptor[]
****
include::../validity/structs/VkPipelineLayoutCreateInfo.txt[]
--
[open,refpage='VkPipelineLayoutCreateFlags',desc='Reserved for future use',type='enums']
--
include::../api/flags/VkPipelineLayoutCreateFlags.txt[]
sname:VkPipelineLayoutCreateFlags is a bitmask type for setting a mask, but
is currently reserved for future use.
--
[open,refpage='VkPushConstantRange',desc='Structure specifying a push constant range',type='structs']
--
The sname:VkPushConstantRange structure is defined as:
include::../api/structs/VkPushConstantRange.txt[]
* pname:stageFlags is a set of stage flags describing the shader stages
that will access a range of push constants.
If a particular stage is not included in the range, then accessing
members of that range of push constants from the corresponding shader
stage will result in undefined data being read.
* pname:offset and pname:size are the start offset and size, respectively,
consumed by the range.
Both pname:offset and pname:size are in units of bytes and must: be a
multiple of 4.
The layout of the push constant variables is specified in the shader.
.Valid Usage
****
* [[VUID-VkPushConstantRange-offset-00294]]
pname:offset must: be less than
sname:VkPhysicalDeviceLimits::pname:maxPushConstantsSize
* [[VUID-VkPushConstantRange-offset-00295]]
pname:offset must: be a multiple of `4`
* [[VUID-VkPushConstantRange-size-00296]]
pname:size must: be greater than `0`
* [[VUID-VkPushConstantRange-size-00297]]
pname:size must: be a multiple of `4`
* [[VUID-VkPushConstantRange-size-00298]]
pname:size must: be less than or equal to
sname:VkPhysicalDeviceLimits::pname:maxPushConstantsSize minus
pname:offset
****
include::../validity/structs/VkPushConstantRange.txt[]
--
Once created, pipeline layouts are used as part of pipeline creation (see
<<pipelines, Pipelines>>), as part of binding descriptor sets (see
<<descriptorsets-binding, Descriptor Set Binding>>), and as part of setting
push constants (see <<descriptorsets-push-constants, Push Constant
Updates>>).
Pipeline creation accepts a pipeline layout as input, and the layout may: be
used to map (set, binding, arrayElement) tuples to implementation resources
or memory locations within a descriptor set.
The assignment of implementation resources depends only on the bindings
defined in the descriptor sets that comprise the pipeline layout, and not on
any shader source.
[[descriptorsets-pipelinelayout-consistency]]
All resource variables <<shaders-staticuse,statically used>> in all shaders
in a pipeline must: be declared with a (set,binding,arrayElement) that
exists in the corresponding descriptor set layout and is of an appropriate
descriptor type and includes the set of shader stages it is used by in
pname:stageFlags.
The pipeline layout can: include entries that are not used by a particular
pipeline, or that are dead-code eliminated from any of the shaders.
The pipeline layout allows the application to provide a consistent set of
bindings across multiple pipeline compiles, which enables those pipelines to
be compiled in a way that the implementation may: cheaply switch pipelines
without reprogramming the bindings.
Similarly, the push constant block declared in each shader (if present)
must: only place variables at offsets that are each included in a push
constant range with pname:stageFlags including the bit corresponding to the
shader stage that uses it.
The pipeline layout can: include ranges or portions of ranges that are not
used by a particular pipeline, or for which the variables have been
dead-code eliminated from any of the shaders.
There is a limit on the total number of resources of each type that can: be
included in bindings in all descriptor set layouts in a pipeline layout as
shown in <<descriptorsets-pipelinelayout-limits,Pipeline Layout Resource
Limits>>.
The "`Total Resources Available`" column gives the limit on the number of
each type of resource that can: be included in bindings in all descriptor
sets in the pipeline layout.
Some resource types count against multiple limits.
Additionally, there are limits on the total number of each type of resource
that can: be used in any pipeline stage as described in
<<interfaces-resources-limits,Shader Resource Limits>>.
[[descriptorsets-pipelinelayout-limits]]
.Pipeline Layout Resource Limits
[width="80%",cols="<37,<22",options="header"]
|====
| Total Resources Available | Resource Types
.2+<.^| pname:maxDescriptorSetSamplers
ifdef::VK_EXT_descriptor_indexing[]
or pname:maxDescriptorSetUpdateAfterBindSamplers
endif::VK_EXT_descriptor_indexing[]
| sampler | combined image sampler
.3+<.^| pname:maxDescriptorSetSampledImages
ifdef::VK_EXT_descriptor_indexing[]
or pname:maxDescriptorSetUpdateAfterBindSampledImages
endif::VK_EXT_descriptor_indexing[]
| sampled image | combined image sampler | uniform texel buffer
.2+<.^| pname:maxDescriptorSetStorageImages
ifdef::VK_EXT_descriptor_indexing[]
or pname:maxDescriptorSetUpdateAfterBindStorageImages
endif::VK_EXT_descriptor_indexing[]
| storage image | storage texel buffer
.2+<.^| pname:maxDescriptorSetUniformBuffers
ifdef::VK_EXT_descriptor_indexing[]
or pname:maxDescriptorSetUpdateAfterBindUniformBuffers
endif::VK_EXT_descriptor_indexing[]
| uniform buffer | uniform buffer dynamic
| pname:maxDescriptorSetUniformBuffersDynamic
ifdef::VK_EXT_descriptor_indexing[]
or pname:maxDescriptorSetUpdateAfterBindUniformBuffersDynamic
endif::VK_EXT_descriptor_indexing[]
| uniform buffer dynamic
.2+<.^| pname:maxDescriptorSetStorageBuffers
ifdef::VK_EXT_descriptor_indexing[]
or pname:maxDescriptorSetUpdateAfterBindStorageBuffers
endif::VK_EXT_descriptor_indexing[]
| storage buffer | storage buffer dynamic
| pname:maxDescriptorSetStorageBuffersDynamic
ifdef::VK_EXT_descriptor_indexing[]
or pname:maxDescriptorSetUpdateAfterBindStorageBuffersDynamic
endif::VK_EXT_descriptor_indexing[]
| storage buffer dynamic
| pname:maxDescriptorSetInputAttachments
ifdef::VK_EXT_descriptor_indexing[]
or pname:maxDescriptorSetUpdateAfterBindInputAttachments
endif::VK_EXT_descriptor_indexing[]
| input attachment
|====
[open,refpage='vkDestroyPipelineLayout',desc='Destroy a pipeline layout object',type='protos']
--
To destroy a pipeline layout, call:
include::../api/protos/vkDestroyPipelineLayout.txt[]
* pname:device is the logical device that destroys the pipeline layout.
* pname:pipelineLayout is the pipeline layout to destroy.
* pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
.Valid Usage
****
* [[VUID-vkDestroyPipelineLayout-pipelineLayout-00299]]
If sname:VkAllocationCallbacks were provided when pname:pipelineLayout
was created, a compatible set of callbacks must: be provided here
* [[VUID-vkDestroyPipelineLayout-pipelineLayout-00300]]
If no sname:VkAllocationCallbacks were provided when
pname:pipelineLayout was created, pname:pAllocator must: be `NULL`
****
include::../validity/protos/vkDestroyPipelineLayout.txt[]
--
[[descriptorsets-compatibility]]
==== Pipeline Layout Compatibility
Two pipeline layouts are defined to be "`compatible for
<<descriptorsets-push-constants, push constants>>`" if they were created
with identical push constant ranges.
Two pipeline layouts are defined to be "`compatible for set N`" if they were
created with _identically defined_ descriptor set layouts for sets zero
through N, and if they were created with identical push constant ranges.
When binding a descriptor set (see <<descriptorsets-binding, Descriptor Set
Binding>>) to set number N, if the previously bound descriptor sets for sets
zero through N-1 were all bound using compatible pipeline layouts, then
performing this binding does not disturb any of the lower numbered sets.
If, additionally, the previous bound descriptor set for set N was bound
using a pipeline layout compatible for set N, then the bindings in sets
numbered greater than N are also not disturbed.
Similarly, when binding a pipeline, the pipeline can: correctly access any
previously bound descriptor sets which were bound with compatible pipeline
layouts, as long as all lower numbered sets were also bound with compatible
layouts.
Layout compatibility means that descriptor sets can: be bound to a command
buffer for use by any pipeline created with a compatible pipeline layout,
and without having bound a particular pipeline first.
It also means that descriptor sets can: remain valid across a pipeline
change, and the same resources will be accessible to the newly bound
pipeline.
ifdef::implementation-guide[]
.Implementor's Note
****
A consequence of layout compatibility is that when the implementation
compiles a pipeline layout and maps pipeline resources to implementation
resources, the mechanism for set N should: only be a function of sets
[0..N].
****
endif::implementation-guide[]
[NOTE]
.Note
====
Place the least frequently changing descriptor sets near the start of the
pipeline layout, and place the descriptor sets representing the most
frequently changing resources near the end.
When pipelines are switched, only the descriptor set bindings that have been
invalidated will need to be updated and the remainder of the descriptor set
bindings will remain in place.
====
The maximum number of descriptor sets that can: be bound to a pipeline
layout is queried from physical device properties (see
pname:maxBoundDescriptorSets in <<features-limits, Limits>>).
.API example
[source,c++]
---------------------------------------------------
const VkDescriptorSetLayout layouts[] = { layout1, layout2 };
const VkPushConstantRange ranges[] =
{
{
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, // stageFlags
0, // offset
4 // size
},
{
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // stageFlags
4, // offset
4 // size
},
};
const VkPipelineLayoutCreateInfo createInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, // sType
NULL, // pNext
0, // flags
2, // setLayoutCount
layouts, // pSetLayouts
2, // pushConstantRangeCount
ranges // pPushConstantRanges
};
VkPipelineLayout myPipelineLayout;
myResult = vkCreatePipelineLayout(
myDevice,
&createInfo,
NULL,
&myPipelineLayout);
---------------------------------------------------
[[descriptorsets-allocation]]
=== Allocation of Descriptor Sets
[open,refpage='VkDescriptorPool',desc='Opaque handle to a descriptor pool object',type='handles']
--
A _descriptor pool_ maintains a pool of descriptors, from which descriptor
sets are allocated.
Descriptor pools are externally synchronized, meaning that the application
must: not allocate and/or free descriptor sets from the same pool in
multiple threads simultaneously.
Descriptor pools are represented by sname:VkDescriptorPool handles:
include::../api/handles/VkDescriptorPool.txt[]
--
[open,refpage='vkCreateDescriptorPool',desc='Creates a descriptor pool object',type='protos']
--
To create a descriptor pool object, call:
include::../api/protos/vkCreateDescriptorPool.txt[]
* pname:device is the logical device that creates the descriptor pool.
* pname:pCreateInfo is a pointer to an instance of the
slink:VkDescriptorPoolCreateInfo structure specifying the state of the
descriptor pool object.
* pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
* pname:pDescriptorPool points to a slink:VkDescriptorPool handle in which
the resulting descriptor pool object is returned.
pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
The created descriptor pool is returned in pname:pDescriptorPool.
include::../validity/protos/vkCreateDescriptorPool.txt[]
--
[open,refpage='VkDescriptorPoolCreateInfo',desc='Structure specifying parameters of a newly created descriptor pool',type='structs']
--
Additional information about the pool is passed in an instance of the
sname:VkDescriptorPoolCreateInfo structure:
include::../api/structs/VkDescriptorPoolCreateInfo.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:flags is a bitmask of elink:VkDescriptorPoolCreateFlagBits
specifying certain supported operations on the pool.
* pname:maxSets is the maximum number of descriptor sets that can: be
allocated from the pool.
* pname:poolSizeCount is the number of elements in pname:pPoolSizes.
* pname:pPoolSizes is a pointer to an array of slink:VkDescriptorPoolSize
structures, each containing a descriptor type and number of descriptors
of that type to be allocated in the pool.
If multiple sname:VkDescriptorPoolSize structures appear in the
pname:pPoolSizes array then the pool will be created with enough storage for
the total number of descriptors of each type.
Fragmentation of a descriptor pool is possible and may: lead to descriptor
set allocation failures.
A failure due to fragmentation is defined as failing a descriptor set
allocation despite the sum of all outstanding descriptor set allocations
from the pool plus the requested allocation requiring no more than the total
number of descriptors requested at pool creation.
Implementations provide certain guarantees of when fragmentation must: not
cause allocation failure, as described below.
If a descriptor pool has not had any descriptor sets freed since it was
created or most recently reset then fragmentation must: not cause an
allocation failure (note that this is always the case for a pool created
without the ename:VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT bit
set).
Additionally, if all sets allocated from the pool since it was created or
most recently reset use the same number of descriptors (of each type) and
the requested allocation also uses that same number of descriptors (of each
type), then fragmentation must: not cause an allocation failure.
If an allocation failure occurs due to fragmentation, an application can:
create an additional descriptor pool to perform further descriptor set
allocations.
ifdef::VK_EXT_descriptor_indexing[]
If pname:flags has the
ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT bit set,
descriptor pool creation may: fail with the error
ename:VK_ERROR_FRAGMENTATION_EXT if the total number of descriptors across
all pools (including this one) created with this bit set exceeds
pname:maxUpdateAfterBindDescriptorsInAllPools, or if fragmentation of the
underlying hardware resources occurs.
endif::VK_EXT_descriptor_indexing[]
.Valid Usage
****
* [[VUID-VkDescriptorPoolCreateInfo-maxSets-00301]]
pname:maxSets must: be greater than `0`
****
include::../validity/structs/VkDescriptorPoolCreateInfo.txt[]
--
[open,refpage='VkDescriptorPoolCreateFlagBits',desc='Bitmask specifying certain supported operations on a descriptor pool',type='enums']
--
Bits which can: be set in slink:VkDescriptorPoolCreateInfo::pname:flags to
enable operations on a descriptor pool are:
include::../api/enums/VkDescriptorPoolCreateFlagBits.txt[]
* ename:VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT specifies that
descriptor sets can: return their individual allocations to the pool,
i.e. all of flink:vkAllocateDescriptorSets, flink:vkFreeDescriptorSets,
and flink:vkResetDescriptorPool are allowed.
Otherwise, descriptor sets allocated from the pool must: not be
individually freed back to the pool, i.e. only
flink:vkAllocateDescriptorSets and flink:vkResetDescriptorPool are
allowed.
ifdef::VK_EXT_descriptor_indexing[]
* ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT specifies that
descriptor sets allocated from this pool can: include bindings with the
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT bit set.
It is valid to allocate descriptor sets that have bindings that do not
set the ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT bit from a
pool that has ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT
set.
endif::VK_EXT_descriptor_indexing[]
--
[open,refpage='VkDescriptorPoolCreateFlags',desc='Bitmask of VkDescriptorPoolCreateFlagBits',type='enums']
--
include::../api/flags/VkDescriptorPoolCreateFlags.txt[]
sname:VkDescriptorPoolCreateFlags is a bitmask type for setting a mask of
zero or more slink:VkDescriptorPoolCreateFlagBits.
--
[open,refpage='VkDescriptorPoolSize',desc='Structure specifying descriptor pool size',type='structs']
--
The sname:VkDescriptorPoolSize structure is defined as:
include::../api/structs/VkDescriptorPoolSize.txt[]
* pname:type is the type of descriptor.
* pname:descriptorCount is the number of descriptors of that type to
allocate.
.Valid Usage
****
* [[VUID-VkDescriptorPoolSize-descriptorCount-00302]]
pname:descriptorCount must: be greater than `0`
****
include::../validity/structs/VkDescriptorPoolSize.txt[]
--
[open,refpage='vkDestroyDescriptorPool',desc='Destroy a descriptor pool object',type='protos']
--
To destroy a descriptor pool, call:
include::../api/protos/vkDestroyDescriptorPool.txt[]
* pname:device is the logical device that destroys the descriptor pool.
* pname:descriptorPool is the descriptor pool to destroy.
* pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
When a pool is destroyed, all descriptor sets allocated from the pool are
implicitly freed and become invalid.
Descriptor sets allocated from a given pool do not need to be freed before
destroying that descriptor pool.
.Valid Usage
****
* [[VUID-vkDestroyDescriptorPool-descriptorPool-00303]]
All submitted commands that refer to pname:descriptorPool (via any
allocated descriptor sets) must: have completed execution
* [[VUID-vkDestroyDescriptorPool-descriptorPool-00304]]
If sname:VkAllocationCallbacks were provided when pname:descriptorPool
was created, a compatible set of callbacks must: be provided here
* [[VUID-vkDestroyDescriptorPool-descriptorPool-00305]]
If no sname:VkAllocationCallbacks were provided when
pname:descriptorPool was created, pname:pAllocator must: be `NULL`
****
include::../validity/protos/vkDestroyDescriptorPool.txt[]
--
[open,refpage='VkDescriptorSet',desc='Opaque handle to a descriptor set object',type='handles']
--
Descriptor sets are allocated from descriptor pool objects, and are
represented by sname:VkDescriptorSet handles:
include::../api/handles/VkDescriptorSet.txt[]
--
[open,refpage='vkAllocateDescriptorSets',desc='Allocate one or more descriptor sets',type='protos']
--
To allocate descriptor sets from a descriptor pool, call:
include::../api/protos/vkAllocateDescriptorSets.txt[]
* pname:device is the logical device that owns the descriptor pool.
* pname:pAllocateInfo is a pointer to an instance of the
slink:VkDescriptorSetAllocateInfo structure describing parameters of the
allocation.
* pname:pDescriptorSets is a pointer to an array of slink:VkDescriptorSet
handles in which the resulting descriptor set objects are returned.
The allocated descriptor sets are returned in pname:pDescriptorSets.
When a descriptor set is allocated, the initial state is largely
uninitialized and all descriptors are undefined.
However, the descriptor set can: be bound in a command buffer without
causing errors or exceptions.
ifdef::VK_EXT_descriptor_indexing[]
For descriptor set bindings created with the
ename:VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT bit set, all descriptors
in that binding that are dynamically used must: have been populated before
the descriptor set is <<descriptorsets-binding,consumed>>.
For descriptor set bindings created without the
ename:VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT bit set, all descriptors
in that binding that are statically used must: have been populated before
the descriptor set is <<descriptorsets-binding,consumed>>.
endif::VK_EXT_descriptor_indexing[]
ifndef::VK_EXT_descriptor_indexing[]
All descriptors that are statically used must: have been populated before
the descriptor set is consumed.
endif::VK_EXT_descriptor_indexing[]
Entries that are not used by a pipeline can: have uninitialized descriptors
or descriptors of resources that have been destroyed, and executing a draw
or dispatch with such a descriptor set bound does not cause undefined
behavior.
This means applications need not populate unused entries with dummy
descriptors.
ifdef::VK_VERSION_1_1,VK_KHR_maintenance1[]
If a call to fname:vkAllocateDescriptorSets would cause the total number of
descriptor sets allocated from the pool to exceed the value of
slink:VkDescriptorPoolCreateInfo::pname:maxSets used to create
pname:pAllocateInfo->pname:descriptorPool, then the allocation may: fail due
to lack of space in the descriptor pool.
Similarly, the allocation may: fail due to lack of space if the call to
fname:vkAllocateDescriptorSets would cause the number of any given
descriptor type to exceed the sum of all the pname:descriptorCount members
of each element of slink:VkDescriptorPoolCreateInfo::pname:pPoolSizes with a
pname:member equal to that type.
If the allocation fails due to no more space in the descriptor pool, and not
because of system or device memory exhaustion, then
ename:VK_ERROR_OUT_OF_POOL_MEMORY must: be returned.
endif::VK_VERSION_1_1,VK_KHR_maintenance1[]
ifndef::VK_VERSION_1_1,VK_KHR_maintenance2[]
If an allocation fails due to fragmentation, an indeterminate error is
returned with an unspecified error code.
Any returned error other than
ifdef::VK_VERSION_1_1,VK_KHR_maintenance1[]
ename:VK_ERROR_OUT_OF_POOL_MEMORY or
endif::VK_VERSION_1_1,VK_KHR_maintenance1[]
ename:VK_ERROR_FRAGMENTED_POOL does not imply its usual meaning:
applications should: assume that the allocation failed due to fragmentation,
and create a new descriptor pool.
endif::VK_VERSION_1_1,VK_KHR_maintenance2[]
ifdef::VK_VERSION_1_1,VK_KHR_maintenance1[]
fname:vkAllocateDescriptorSets can: be used to create multiple descriptor
sets.
If the creation of any of those descriptor sets fails, then the
implementation must: destroy all successfully created descriptor set objects
from this command, set all entries of the pname:pDescriptorSets array to
dlink:VK_NULL_HANDLE and return the error.
endif::VK_VERSION_1_1,VK_KHR_maintenance1[]
ifndef::VK_VERSION_1_1,VK_KHR_maintenance2[]
[NOTE]
.Note
====
Applications should: check for a negative return value when allocating new
descriptor sets, assume that any error
ifdef::VK_VERSION_1_1,VK_KHR_maintenance1[]
other than ename:VK_ERROR_OUT_OF_POOL_MEMORY
endif::VK_VERSION_1_1,VK_KHR_maintenance1[]
effectively means ename:VK_ERROR_FRAGMENTED_POOL, and try to create a new
descriptor pool.
If ename:VK_ERROR_FRAGMENTED_POOL is the actual return value, it adds
certainty to that decision.
The reason for this is that ename:VK_ERROR_FRAGMENTED_POOL was only added in
a later revision of the 1.0 specification, and so drivers may: return other
errors if they were written against earlier revisions.
To ensure full compatibility with earlier patch revisions, these other
errors are allowed.
====
endif::VK_VERSION_1_1,VK_KHR_maintenance2[]
include::../validity/protos/vkAllocateDescriptorSets.txt[]
--
[open,refpage='VkDescriptorSetAllocateInfo',desc='Structure specifying the allocation parameters for descriptor sets',type='structs']
--
The sname:VkDescriptorSetAllocateInfo structure is defined as:
include::../api/structs/VkDescriptorSetAllocateInfo.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:descriptorPool is the pool which the sets will be allocated from.
* pname:descriptorSetCount determines the number of descriptor sets to be
allocated from the pool.
* pname:pSetLayouts is an array of descriptor set layouts, with each
member specifying how the corresponding descriptor set is allocated.
.Valid Usage
****
ifndef::VK_VERSION_1_1,VK_KHR_maintenance1[]
* [[VUID-VkDescriptorSetAllocateInfo-descriptorSetCount-00306]]
pname:descriptorSetCount must: not be greater than the number of sets
that are currently available for allocation in pname:descriptorPool
* [[VUID-VkDescriptorSetAllocateInfo-descriptorPool-00307]]
pname:descriptorPool must: have enough free descriptor capacity
remaining to allocate the descriptor sets of the specified layouts
endif::VK_VERSION_1_1,VK_KHR_maintenance1[]
ifdef::VK_KHR_push_descriptor[]
* [[VUID-VkDescriptorSetAllocateInfo-pSetLayouts-00308]]
Each element of pname:pSetLayouts must: not have been created with
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR set
endif::VK_KHR_push_descriptor[]
ifdef::VK_EXT_descriptor_indexing[]
* [[VUID-VkDescriptorSetAllocateInfo-pSetLayouts-03044]]
If any element of pname:pSetLayouts was created with the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT bit
set, pname:descriptorPool must: have been created with the
ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT flag set
endif::VK_EXT_descriptor_indexing[]
****
include::../validity/structs/VkDescriptorSetAllocateInfo.txt[]
--
ifdef::VK_EXT_descriptor_indexing[]
[open,refpage='VkDescriptorSetVariableDescriptorCountAllocateInfoEXT',desc='Structure specifying additional allocation parameters for descriptor sets',type='structs']
--
If the pname:pNext chain of a slink:VkDescriptorSetAllocateInfo structure
includes a sname:VkDescriptorSetVariableDescriptorCountAllocateInfoEXT
structure, then that structure includes an array of descriptor counts for
variable descriptor count bindings, one for each descriptor set being
allocated.
The sname:VkDescriptorSetVariableDescriptorCountAllocateInfoEXT structure is
defined as:
include::../api/structs/VkDescriptorSetVariableDescriptorCountAllocateInfoEXT.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:descriptorSetCount is zero or the number of elements in
pname:pDescriptorCounts.
* pname:pDescriptorCounts is an array of descriptor counts, with each
member specifying the number of descriptors in a variable descriptor
count binding in the corresponding descriptor set being allocated.
If pname:descriptorSetCount is zero or this structure is not included in the
pname:pNext chain, then the variable lengths are considered to be zero.
Otherwise, pname:pDescriptorCounts[i] is the number of descriptors in the
variable count descriptor binding in the corresponding descriptor set
layout.
If slink:VkDescriptorSetAllocateInfo::pname:pSetLayouts[i] does not include
a variable count descriptor binding, then pname:pDescriptorCounts[i] is
ignored.
.Valid Usage
****
* [[VUID-VkDescriptorSetVariableDescriptorCountAllocateInfoEXT-descriptorSetCount-03045]]
If pname:descriptorSetCount is not zero, pname:descriptorSetCount must:
equal slink:VkDescriptorSetAllocateInfo::pname:descriptorSetCount
* [[VUID-VkDescriptorSetVariableDescriptorCountAllocateInfoEXT-pSetLayouts-03046]]
If slink:VkDescriptorSetAllocateInfo::pname:pSetLayouts[i] has a
variable descriptor count binding, then pname:pDescriptorCounts[i] must:
be less than or equal to the descriptor count specified for that binding
when the descriptor set layout was created.
****
include::../validity/structs/VkDescriptorSetVariableDescriptorCountAllocateInfoEXT.txt[]
--
endif::VK_EXT_descriptor_indexing[]
[open,refpage='vkFreeDescriptorSets',desc='Free one or more descriptor sets',type='protos']
--
To free allocated descriptor sets, call:
include::../api/protos/vkFreeDescriptorSets.txt[]
* pname:device is the logical device that owns the descriptor pool.
* pname:descriptorPool is the descriptor pool from which the descriptor
sets were allocated.
* pname:descriptorSetCount is the number of elements in the
pname:pDescriptorSets array.
* pname:pDescriptorSets is an array of handles to slink:VkDescriptorSet
objects.
After a successful call to fname:vkFreeDescriptorSets, all descriptor sets
in pname:pDescriptorSets are invalid.
.Valid Usage
****
* [[VUID-vkFreeDescriptorSets-pDescriptorSets-00309]]
All submitted commands that refer to any element of
pname:pDescriptorSets must: have completed execution
* [[VUID-vkFreeDescriptorSets-pDescriptorSets-00310]]
pname:pDescriptorSets must: be a valid pointer to an array of
pname:descriptorSetCount sname:VkDescriptorSet handles, each element of
which must: either be a valid handle or dlink:VK_NULL_HANDLE
* [[VUID-vkFreeDescriptorSets-pDescriptorSets-00311]]
Each valid handle in pname:pDescriptorSets must: have been allocated
from pname:descriptorPool
* [[VUID-vkFreeDescriptorSets-descriptorPool-00312]]
pname:descriptorPool must: have been created with the
ename:VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT flag
****
include::../validity/protos/vkFreeDescriptorSets.txt[]
--
[open,refpage='vkResetDescriptorPool',desc='Resets a descriptor pool object',type='protos']
--
To return all descriptor sets allocated from a given pool to the pool,
rather than freeing individual descriptor sets, call:
include::../api/protos/vkResetDescriptorPool.txt[]
* pname:device is the logical device that owns the descriptor pool.
* pname:descriptorPool is the descriptor pool to be reset.
* pname:flags is reserved for future use.
Resetting a descriptor pool recycles all of the resources from all of the
descriptor sets allocated from the descriptor pool back to the descriptor
pool, and the descriptor sets are implicitly freed.
.Valid Usage
****
* [[VUID-vkResetDescriptorPool-descriptorPool-00313]]
All uses of pname:descriptorPool (via any allocated descriptor sets)
must: have completed execution
****
include::../validity/protos/vkResetDescriptorPool.txt[]
--
[open,refpage='VkDescriptorPoolResetFlags',desc='Reserved for future use',type='enums']
--
include::../api/flags/VkDescriptorPoolResetFlags.txt[]
sname:VkDescriptorPoolResetFlags is a bitmask type for setting a mask, but
is currently reserved for future use.
--
[[descriptorsets-updates]]
=== Descriptor Set Updates
[open,refpage='vkUpdateDescriptorSets',desc='Update the contents of a descriptor set object',type='protos']
--
Once allocated, descriptor sets can: be updated with a combination of write
and copy operations.
To update descriptor sets, call:
include::../api/protos/vkUpdateDescriptorSets.txt[]
* pname:device is the logical device that updates the descriptor sets.
* pname:descriptorWriteCount is the number of elements in the
pname:pDescriptorWrites array.
* pname:pDescriptorWrites is a pointer to an array of
slink:VkWriteDescriptorSet structures describing the descriptor sets to
write to.
* pname:descriptorCopyCount is the number of elements in the
pname:pDescriptorCopies array.
* pname:pDescriptorCopies is a pointer to an array of
slink:VkCopyDescriptorSet structures describing the descriptor sets to
copy between.
The operations described by pname:pDescriptorWrites are performed first,
followed by the operations described by pname:pDescriptorCopies.
Within each array, the operations are performed in the order they appear in
the array.
Each element in the pname:pDescriptorWrites array describes an operation
updating the descriptor set using descriptors for resources specified in the
structure.
Each element in the pname:pDescriptorCopies array is a
slink:VkCopyDescriptorSet structure describing an operation copying
descriptors between sets.
If the pname:dstSet member of any element of pname:pDescriptorWrites or
pname:pDescriptorCopies is bound, accessed, or modified by any command that
was recorded to a command buffer which is currently in the
<<commandbuffers-lifecycle, recording or executable state>>,
ifdef::VK_EXT_descriptor_indexing[]
and any of the descriptor bindings that are updated were not created with
the ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT or
ename:VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT bits set,
endif::VK_EXT_descriptor_indexing[]
that command buffer becomes <<commandbuffers-lifecycle, invalid>>.
.Valid Usage
****
ifndef::VK_EXT_descriptor_indexing[]
* [[VUID-vkUpdateDescriptorSets-dstSet-00314]]
The pname:dstSet member of each element of pname:pDescriptorWrites or
pname:pDescriptorCopies must: not be used by any command that was
recorded to a command buffer which is in the <<commandbuffers-lifecycle,
pending state>>.
endif::VK_EXT_descriptor_indexing[]
ifdef::VK_EXT_descriptor_indexing[]
* [[VUID-vkUpdateDescriptorSets-None-03047]]
Descriptor bindings updated by this command which were created without
the ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT or
ename:VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT bits set
must: not be used by any command that was recorded to a command buffer
which is in the <<commandbuffers-lifecycle,pending state>>.
endif::VK_EXT_descriptor_indexing[]
****
include::../validity/protos/vkUpdateDescriptorSets.txt[]
--
[open,refpage='VkWriteDescriptorSet',desc='Structure specifying the parameters of a descriptor set write operation',type='structs']
--
The sname:VkWriteDescriptorSet structure is defined as:
include::../api/structs/VkWriteDescriptorSet.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:dstSet is the destination descriptor set to update.
* pname:dstBinding is the descriptor binding within that set.
* pname:dstArrayElement is the starting element in that array.
* pname:descriptorCount is the number of descriptors to update (the number
of elements in pname:pImageInfo, pname:pBufferInfo, or
pname:pTexelBufferView).
* pname:descriptorType is a elink:VkDescriptorType specifying the type of
each descriptor in pname:pImageInfo, pname:pBufferInfo, or
pname:pTexelBufferView, as described below.
It must: be the same type as that specified in
sname:VkDescriptorSetLayoutBinding for pname:dstSet at pname:dstBinding.
The type of the descriptor also controls which array the descriptors are
taken from.
* pname:pImageInfo points to an array of slink:VkDescriptorImageInfo
structures or is ignored, as described below.
* pname:pBufferInfo points to an array of slink:VkDescriptorBufferInfo
structures or is ignored, as described below.
* pname:pTexelBufferView points to an array of slink:VkBufferView handles
as described in the <<resources-buffer-views,Buffer Views>> section or
is ignored, as described below.
Only one of pname:pImageInfo, pname:pBufferInfo, or pname:pTexelBufferView
members is used according to the descriptor type specified in the
pname:descriptorType member of the containing sname:VkWriteDescriptorSet
structure, as specified below.
[[descriptorsets-updates-consecutive, consecutive binding updates]]
If the pname:dstBinding has fewer than pname:descriptorCount array elements
remaining starting from pname:dstArrayElement, then the remainder will be
used to update the subsequent binding - [eq]#pname:dstBinding+1# starting at
array element zero.
If a binding has a pname:descriptorCount of zero, it is skipped.
This behavior applies recursively, with the update affecting consecutive
bindings as needed to update all pname:descriptorCount descriptors.
.Valid Usage
****
* [[VUID-VkWriteDescriptorSet-dstBinding-00315]]
pname:dstBinding must: be less than or equal to the maximum value of
pname:binding of all slink:VkDescriptorSetLayoutBinding structures
specified when pname:dstSet's descriptor set layout was created
* [[VUID-VkWriteDescriptorSet-dstBinding-00316]]
pname:dstBinding must: be a binding with a non-zero
pname:descriptorCount
* [[VUID-VkWriteDescriptorSet-descriptorCount-00317]]
All consecutive bindings updated via a single sname:VkWriteDescriptorSet
structure, except those with a pname:descriptorCount of zero, must: have
identical pname:descriptorType and pname:stageFlags.
* [[VUID-VkWriteDescriptorSet-descriptorCount-00318]]
All consecutive bindings updated via a single sname:VkWriteDescriptorSet
structure, except those with a pname:descriptorCount of zero, must: all
either use immutable samplers or must: all not use immutable samplers.
* [[VUID-VkWriteDescriptorSet-descriptorType-00319]]
pname:descriptorType must: match the type of pname:dstBinding within
pname:dstSet
* [[VUID-VkWriteDescriptorSet-dstSet-00320]]
pname:dstSet must: be a valid slink:VkDescriptorSet handle
* [[VUID-VkWriteDescriptorSet-dstArrayElement-00321]]
The sum of pname:dstArrayElement and pname:descriptorCount must: be less
than or equal to the number of array elements in the descriptor set
binding specified by pname:dstBinding, and all applicable consecutive
bindings, as described by <<descriptorsets-updates-consecutive>>
* [[VUID-VkWriteDescriptorSet-descriptorType-00322]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, pname:pImageInfo must: be a
valid pointer to an array of pname:descriptorCount valid
sname:VkDescriptorImageInfo structures
* [[VUID-VkWriteDescriptorSet-descriptorType-00323]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
or ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, pname:pTexelBufferView
must: be a valid pointer to an array of pname:descriptorCount valid
sname:VkBufferView handles
* [[VUID-VkWriteDescriptorSet-descriptorType-00324]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, pname:pBufferInfo must:
be a valid pointer to an array of pname:descriptorCount valid
sname:VkDescriptorBufferInfo structures
* [[VUID-VkWriteDescriptorSet-descriptorType-00325]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_SAMPLER or
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and pname:dstSet was
not allocated with a layout that included immutable samplers for
pname:dstBinding with pname:descriptorType, the pname:sampler member of
each element of pname:pImageInfo must: be a valid sname:VkSampler object
* [[VUID-VkWriteDescriptorSet-descriptorType-00326]]
If pname:descriptorType is
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the pname:imageView and
pname:imageLayout members of each element of pname:pImageInfo must: be a
valid sname:VkImageView and elink:VkImageLayout, respectively
ifdef::VULKAN_1_1,VK_KHR_sampler_ycbcr_conversion[]
* [[VUID-VkWriteDescriptorSet-descriptorType-01946]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, then
the pname:imageView member of each pname:pImageInfo element must: have
been created without a sname:VkSamplerYcbcrConversionInfo structure in
its pname:pNext chain
* [[VUID-VkWriteDescriptorSet-descriptorType-01947]]
If pname:descriptorType is
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and if any element of
pname:pImageInfo has a pname:imageView member that was created with a
sname:VkSamplerYcbcrConversionInfo structure in its pname:pNext chain,
then pname:dstSet must: have been allocated with a layout that included
immutable samplers for pname:dstBinding
* [[VUID-VkWriteDescriptorSet-descriptorType-01948]]
If pname:descriptorType is
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and pname:dstSet was
allocated with a layout that included immutable samplers for
pname:dstBinding, then the pname:imageView member of each element of
pname:pImageInfo which corresponds to a immutable sampler that enables
<<samplers-YCbCr-conversion,sampler Y'C~B~C~R~ conversion>> must: have
been created with a sname:VkSamplerYcbcrConversionInfo structure in its
pname:pNext chain with an _identically defined_
sname:VkSamplerYcbcrConversionInfo to the corresponding immutable
sampler
endif::VULKAN_1_1,VK_KHR_sampler_ycbcr_conversion[]
* [[VUID-VkWriteDescriptorSet-descriptorType-01402]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, for
each descriptor that will be accessed via load or store operations the
pname:imageLayout member for corresponding elements of pname:pImageInfo
must: be ename:VK_IMAGE_LAYOUT_GENERAL
* [[VUID-VkWriteDescriptorSet-descriptorType-00327]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the pname:offset member
of each element of pname:pBufferInfo must: be a multiple of
sname:VkPhysicalDeviceLimits::pname:minUniformBufferOffsetAlignment
* [[VUID-VkWriteDescriptorSet-descriptorType-00328]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the pname:offset member
of each element of pname:pBufferInfo must: be a multiple of
sname:VkPhysicalDeviceLimits::pname:minStorageBufferOffsetAlignment
* [[VUID-VkWriteDescriptorSet-descriptorType-00329]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, and the pname:buffer
member of any element of pname:pBufferInfo is the handle of a non-sparse
buffer, then that buffer must: be bound completely and contiguously to a
single sname:VkDeviceMemory object
* [[VUID-VkWriteDescriptorSet-descriptorType-00330]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the pname:buffer member
of each element of pname:pBufferInfo must: have been created with
ename:VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT set
* [[VUID-VkWriteDescriptorSet-descriptorType-00331]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the pname:buffer member
of each element of pname:pBufferInfo must: have been created with
ename:VK_BUFFER_USAGE_STORAGE_BUFFER_BIT set
* [[VUID-VkWriteDescriptorSet-descriptorType-00332]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the pname:range member
of each element of pname:pBufferInfo, or the effective range if
pname:range is ename:VK_WHOLE_SIZE, must: be less than or equal to
sname:VkPhysicalDeviceLimits::pname:maxUniformBufferRange
* [[VUID-VkWriteDescriptorSet-descriptorType-00333]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the pname:range member
of each element of pname:pBufferInfo, or the effective range if
pname:range is ename:VK_WHOLE_SIZE, must: be less than or equal to
sname:VkPhysicalDeviceLimits::pname:maxStorageBufferRange
* [[VUID-VkWriteDescriptorSet-descriptorType-00334]]
If pname:descriptorType is
ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, the sname:VkBuffer that
each element of pname:pTexelBufferView was created from must: have been
created with ename:VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT set
* [[VUID-VkWriteDescriptorSet-descriptorType-00335]]
If pname:descriptorType is
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, the sname:VkBuffer that
each element of pname:pTexelBufferView was created from must: have been
created with ename:VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT set
* [[VUID-VkWriteDescriptorSet-descriptorType-00336]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE or
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the pname:imageView member of
each element of pname:pImageInfo must: have been created with the
identity swizzle
* [[VUID-VkWriteDescriptorSet-descriptorType-00337]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the pname:imageView
member of each element of pname:pImageInfo must: have been created with
ename:VK_IMAGE_USAGE_SAMPLED_BIT set
* [[VUID-VkWriteDescriptorSet-descriptorType-01403]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the pname:imageLayout
member of each element of pname:pImageInfo must: be
ename:VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
ename:VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL or
ename:VK_IMAGE_LAYOUT_GENERAL
* [[VUID-VkWriteDescriptorSet-descriptorType-00338]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
the pname:imageView member of each element of pname:pImageInfo must:
have been created with ename:VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT set
* [[VUID-VkWriteDescriptorSet-descriptorType-00339]]
If pname:descriptorType is ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, the
pname:imageView member of each element of pname:pImageInfo must: have
been created with ename:VK_IMAGE_USAGE_STORAGE_BIT set
ifdef::VK_EXT_descriptor_indexing[]
* [[VUID-VkWriteDescriptorSet-descriptorCount-03048]]
All consecutive bindings updated via a single sname:VkWriteDescriptorSet
structure, except those with a pname:descriptorCount of zero, must: have
identical elink:VkDescriptorBindingFlagBitsEXT.
endif::VK_EXT_descriptor_indexing[]
****
include::../validity/structs/VkWriteDescriptorSet.txt[]
--
[open,refpage='VkDescriptorType',desc='Specifies the type of a descriptor in a descriptor set',type='enums']
--
The type of descriptors in a descriptor set is specified by
slink:VkWriteDescriptorSet::pname:descriptorType, which must: be one of the
values:
include::../api/enums/VkDescriptorType.txt[]
* ename:VK_DESCRIPTOR_TYPE_SAMPLER specifies a <<descriptorsets-sampler,
sampler descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER specifies a
<<descriptorsets-combinedimagesampler, combined image sampler
descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE specifies a
<<descriptorsets-sampledimage, sampled image descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE specifies a
<<descriptorsets-storageimage, storage image descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER specifies a
<<descriptorsets-uniformtexelbuffer, uniform texel buffer descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER specifies a
<<descriptorsets-storagetexelbuffer, storage texel buffer descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER specifies a
<<descriptorsets-uniformbuffer, uniform buffer descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER specifies a
<<descriptorsets-storagebuffer, storage buffer descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC specifies a
<<descriptorsets-uniformbufferdynamic, dynamic uniform buffer
descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC specifies a
<<descriptorsets-storagebufferdynamic, dynamic storage buffer
descriptor>>.
* ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT specifies a
<<descriptorsets-inputattachment, input attachment descriptor>>.
When a descriptor set is updated via elements of slink:VkWriteDescriptorSet,
members of pname:pImageInfo, pname:pBufferInfo and pname:pTexelBufferView
are only accessed by the implementation when they correspond to descriptor
type being defined - otherwise they are ignored.
The members accessed are as follows for each descriptor type:
* For ename:VK_DESCRIPTOR_TYPE_SAMPLER, only the pname:sample member of
each element of slink:VkWriteDescriptorSet::pname:pImageInfo is
accessed.
* For ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, only the pname:imageView and
pname:imageLayout members of each element of
slink:VkWriteDescriptorSet::pname:pImageInfo are accessed.
* For ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, all members of each
element of slink:VkWriteDescriptorSet::pname:pImageInfo are accessed.
* For ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, all members of each
element of slink:VkWriteDescriptorSet::pname:pBufferInfo are accessed.
* For ename:VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or
ename:VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, each element of
slink:VkWriteDescriptorSet::pname:pTexelBufferView is accessed.
--
[open,refpage='VkDescriptorBufferInfo',desc='Structure specifying descriptor buffer info',type='structs']
--
The sname:VkDescriptorBufferInfo structure is defined as:
include::../api/structs/VkDescriptorBufferInfo.txt[]
* pname:buffer is the buffer resource.
* pname:offset is the offset in bytes from the start of pname:buffer.
Access to buffer memory via this descriptor uses addressing that is
relative to this starting offset.
* pname:range is the size in bytes that is used for this descriptor
update, or ename:VK_WHOLE_SIZE to use the range from pname:offset to the
end of the buffer.
[NOTE]
.Note
====
When setting pname:range to ename:VK_WHOLE_SIZE, the effective range must:
not be larger than the maximum range for the descriptor type
(<<features-limits-maxUniformBufferRange, maxUniformBufferRange>> or
<<features-limits-maxStorageBufferRange, maxStorageBufferRange>>).
This means that ename:VK_WHOLE_SIZE is not typically useful in the common
case where uniform buffer descriptors are suballocated from a buffer that is
much larger than pname:maxUniformBufferRange.
====
For ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC and
ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC descriptor types,
pname:offset is the base offset from which the dynamic offset is applied and
pname:range is the static size used for all dynamic offsets.
.Valid Usage
****
* [[VUID-VkDescriptorBufferInfo-offset-00340]]
pname:offset must: be less than the size of pname:buffer
* [[VUID-VkDescriptorBufferInfo-range-00341]]
If pname:range is not equal to ename:VK_WHOLE_SIZE, pname:range must: be
greater than `0`
* [[VUID-VkDescriptorBufferInfo-range-00342]]
If pname:range is not equal to ename:VK_WHOLE_SIZE, pname:range must: be
less than or equal to the size of pname:buffer minus pname:offset
****
include::../validity/structs/VkDescriptorBufferInfo.txt[]
--
[open,refpage='VkDescriptorImageInfo',desc='Structure specifying descriptor image info',type='structs']
--
The sname:VkDescriptorImageInfo structure is defined as:
include::../api/structs/VkDescriptorImageInfo.txt[]
* pname:sampler is a sampler handle, and is used in descriptor updates for
types ename:VK_DESCRIPTOR_TYPE_SAMPLER and
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER if the binding being
updated does not use immutable samplers.
* pname:imageView is an image view handle, and is used in descriptor
updates for types ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.
* pname:imageLayout is the layout that the image subresources accessible
from pname:imageView will be in at the time this descriptor is accessed.
pname:imageLayout is used in descriptor updates for types
ename:VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
ename:VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and
ename:VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.
Members of sname:VkDescriptorImageInfo that are not used in an update (as
described above) are ignored.
.Valid Usage
****
ifdef::VK_VERSION_1_1,VK_KHR_maintenance1[]
* [[VUID-VkDescriptorImageInfo-imageView-00343]]
pname:imageView must: not be 2D or 2D array image view created from a 3D
image
endif::VK_VERSION_1_1,VK_KHR_maintenance1[]
* [[VUID-VkDescriptorImageInfo-imageView-01976]]
If pname:imageView is created from a depth/stencil image, the
pname:aspectMask used to create the pname:imageView must: include either
ename:VK_IMAGE_ASPECT_DEPTH_BIT or ename:VK_IMAGE_ASPECT_STENCIL_BIT but
not both.
* [[VUID-VkDescriptorImageInfo-imageLayout-00344]]
pname:imageLayout must: match the actual elink:VkImageLayout of each
subresource accessible from pname:imageView at the time this descriptor
is accessed
ifdef::VK_VERSION_1_1,VK_KHR_sampler_ycbcr_conversion[]
* [[VUID-VkDescriptorImageInfo-sampler-01564]]
If pname:sampler is used and the elink:VkFormat of the image is a
<<features-formats-requiring-sampler-ycbcr-conversion,multi-planar
format>>, the image must: have been created with
ename:VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, and the pname:aspectMask of
the pname:imageView must: be ename:VK_IMAGE_ASPECT_PLANE_0_BIT,
ename:VK_IMAGE_ASPECT_PLANE_1_BIT or (for three-plane formats only)
ename:VK_IMAGE_ASPECT_PLANE_2_BIT
endif::VK_VERSION_1_1,VK_KHR_sampler_ycbcr_conversion[]
****
include::../validity/structs/VkDescriptorImageInfo.txt[]
--
[open,refpage='VkCopyDescriptorSet',desc='Structure specifying a copy descriptor set operation',type='structs']
--
The sname:VkCopyDescriptorSet structure is defined as:
include::../api/structs/VkCopyDescriptorSet.txt[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:srcSet, pname:srcBinding, and pname:srcArrayElement are the source
set, binding, and array element, respectively.
* pname:dstSet, pname:dstBinding, and pname:dstArrayElement are the
destination set, binding, and array element, respectively.
* pname:descriptorCount is the number of descriptors to copy from the
source to destination.
If pname:descriptorCount is greater than the number of remaining array
elements in the source or destination binding, those affect consecutive
bindings in a manner similar to slink:VkWriteDescriptorSet above.
.Valid Usage
****
* [[VUID-VkCopyDescriptorSet-srcBinding-00345]]
pname:srcBinding must: be a valid binding within pname:srcSet
* [[VUID-VkCopyDescriptorSet-srcArrayElement-00346]]
The sum of pname:srcArrayElement and pname:descriptorCount must: be less
than or equal to the number of array elements in the descriptor set
binding specified by pname:srcBinding, and all applicable consecutive
bindings, as described by <<descriptorsets-updates-consecutive>>
* [[VUID-VkCopyDescriptorSet-dstBinding-00347]]
pname:dstBinding must: be a valid binding within pname:dstSet
* [[VUID-VkCopyDescriptorSet-dstArrayElement-00348]]
The sum of pname:dstArrayElement and pname:descriptorCount must: be less
than or equal to the number of array elements in the descriptor set
binding specified by pname:dstBinding, and all applicable consecutive
bindings, as described by <<descriptorsets-updates-consecutive>>
* [[VUID-VkCopyDescriptorSet-srcSet-00349]]
If pname:srcSet is equal to pname:dstSet, then the source and
destination ranges of descriptors must: not overlap, where the ranges
may: include array elements from consecutive bindings as described by
<<descriptorsets-updates-consecutive>>
ifdef::VK_EXT_descriptor_indexing[]
* [[VUID-VkCopyDescriptorSet-srcSet-01918]]
If pname:srcSet's layout was created with the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT
flag set, then pname:dstSet's layout must: also have been created with
the ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT
flag set
* [[VUID-VkCopyDescriptorSet-srcSet-01919]]
If pname:srcSet's layout was created without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT
flag set, then pname:dstSet's layout must: also have been created
without the
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT
flag set
* [[VUID-VkCopyDescriptorSet-srcSet-01920]]
If the descriptor pool from which pname:srcSet was allocated was created
with the ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT flag
set, then the descriptor pool from which pname:dstSet was allocated
must: also have been created with the
ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT flag set
* [[VUID-VkCopyDescriptorSet-srcSet-01921]]
If the descriptor pool from which pname:srcSet was allocated was created
without the ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT
flag set, then the descriptor pool from which pname:dstSet was allocated
must: also have been created without the
ename:VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT flag set
endif::VK_EXT_descriptor_indexing[]
****
include::../validity/structs/VkCopyDescriptorSet.txt[]
--
ifdef::VK_VERSION_1_1,VK_KHR_descriptor_update_template[]
[[descriptorsets-updates-with-template]]
=== Descriptor Update Templates
[open,refpage='VkDescriptorUpdateTemplate',desc='Opaque handle to a descriptor update template',type='handles']
--
A descriptor update template specifies a mapping from descriptor update
information in host memory to descriptors in a descriptor set.
It is designed to avoid passing redundant information to the driver when
frequently updating the same set of descriptors in descriptor sets.
Descriptor update template objects are represented by
sname:VkDescriptorUpdateTemplate handles:
include::../api/handles/VkDescriptorUpdateTemplate.txt[]
ifdef::VK_KHR_descriptor_update_template[]
or the equivalent
include::../api/handles/VkDescriptorUpdateTemplateKHR.txt[]
endif::VK_KHR_descriptor_update_template[]
--
=== Descriptor Set Updates with Templates
[open,refpage='vkCreateDescriptorUpdateTemplate',desc='Create a new descriptor update template',type='protos']
--
Updating a large sname:VkDescriptorSet array can: be an expensive operation
since an application must: specify one slink:VkWriteDescriptorSet structure
for each descriptor or descriptor array to update, each of which
re-specifies the same state when updating the same descriptor in multiple
descriptor sets.
For cases when an application wishes to update the same set of descriptors
in multiple descriptor sets allocated using the same
sname:VkDescriptorSetLayout, flink:vkUpdateDescriptorSetWithTemplate can: be
used as a replacement for flink:vkUpdateDescriptorSets.
sname:VkDescriptorUpdateTemplate allows implementations to convert a set of
descriptor update operations on a single descriptor set to an internal
format that, in conjunction with flink:vkUpdateDescriptorSetWithTemplate
ifdef::VK_KHR_push_descriptor[]
or flink:vkCmdPushDescriptorSetWithTemplateKHR
endif::VK_KHR_push_descriptor[]
, can: be more efficient compared to calling flink:vkUpdateDescriptorSets
ifdef::VK_KHR_push_descriptor[]
or flink:vkCmdPushDescriptorSetKHR
endif::VK_KHR_push_descriptor[]
.
The descriptors themselves are not specified in the
sname:VkDescriptorUpdateTemplate, rather, offsets into an application
provided pointer to host memory are specified, which are combined with a
pointer passed to flink:vkUpdateDescriptorSetWithTemplate
ifdef::VK_KHR_push_descriptor[]
or flink:vkCmdPushDescriptorSetWithTemplateKHR
endif::VK_KHR_push_descriptor[]
.
This allows large batches of updates to be executed without having to
convert application data structures into a strictly-defined Vulkan data
structure.
To create a descriptor update template, call:
ifdef::VK_VERSION_1_1[]
include::../api/protos/vkCreateDescriptorUpdateTemplate.txt[]
endif::VK_VERSION_1_1[]
ifdef::VK_VERSION_1_1+VK_KHR_descriptor_update_template[or the equivalent command]
ifdef::VK_KHR_descriptor_update_template[]
include::../api/protos/vkCreateDescriptorUpdateTemplateKHR.txt[]
endif::VK_KHR_descriptor_update_template[]
* pname:device is the logical device that creates the descriptor update
template.
* pname:pCreateInfo is a pointer to an instance of the
slink:VkDescriptorUpdateTemplateCreateInfo structure specifying the set
of descriptors to update with a single call to
ifdef::VK_KHR_push_descriptor[]
flink:vkCmdPushDescriptorSetWithTemplateKHR or
endif::VK_KHR_push_descriptor[]
flink:vkUpdateDescriptorSetWithTemplate.
* pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
* pname:pDescriptorUpdateTemplate points to a
sname:VkDescriptorUpdateTemplate handle in which the resulting
descriptor update template object is returned.
include::../validity/protos/vkCreateDescriptorUpdateTemplate.txt[]
--
[open,refpage='VkDescriptorUpdateTemplateCreateInfo',desc='Structure specifying parameters of a newly created descriptor update template',type='structs']
--
The slink:VkDescriptorUpdateTemplateCreateInfo structure is defined as:
include::../api/structs/VkDescriptorUpdateTemplateCreateInfo.txt[]
ifdef::VK_KHR_descriptor_update_template[]
or the equivalent
include::../api/structs/VkDescriptorUpdateTemplateCreateInfoKHR.txt[]
endif::VK_KHR_descriptor_update_template[]
* pname:sType is the type of this structure.
* pname:pNext is `NULL` or a pointer to an extension-specific structure.
* pname:flags is reserved for future use.
* pname:descriptorUpdateEntryCount is the number of elements in the
pname:pDescriptorUpdateEntries array.
* pname:pDescriptorUpdateEntries is a pointer to an array of
slink:VkDescriptorUpdateTemplateEntry structures describing the
descriptors to be updated by the descriptor update template.
* pname:templateType Specifies the type of the descriptor update template.
If set to ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET it
can: only be used to update descriptor sets with a fixed
pname:descriptorSetLayout.
ifdef::VK_KHR_push_descriptor[]
If set to ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR
it can: only be used to push descriptor sets using the provided
pname:pipelineBindPoint, pname:pipelineLayout, and pname:set number.
endif::VK_KHR_push_descriptor[]
* pname:descriptorSetLayout is the descriptor set layout the parameter
update template will be used with.
All descriptor sets which are going to be updated through the newly
created descriptor update template must: be created with this layout.
pname:descriptorSetLayout is the descriptor set layout used to build the
descriptor update template.
All descriptor sets which are going to be updated through the newly
created descriptor update template must: be created with a layout that
matches (is the same as, or defined identically to) this layout.
This parameter is ignored if pname:templateType is not
ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
ifdef::VK_KHR_push_descriptor[]
* pname:pipelineBindPoint is a elink:VkPipelineBindPoint indicating
whether the descriptors will be used by graphics pipelines or compute
pipelines.
This parameter is ignored if pname:templateType is not
ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR
* pname:pipelineLayout is a slink:VkPipelineLayout object used to program
the bindings.
This parameter is ignored if pname:templateType is not
ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR
* pname:set is the set number of the descriptor set in the pipeline layout
that will be updated.
This parameter is ignored if pname:templateType is not
ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR
endif::VK_KHR_push_descriptor[]
ifndef::VK_KHR_push_descriptor[]
* pname:pipelineBindPoint is reserved for future use and is ignored
* pname:pipelineLayout is reserved for future use and is ignored
* pname:set is reserved for future use and is ignored
endif::VK_KHR_push_descriptor[]
.Valid Usage
****
* [[VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00350]]
If pname:templateType is
ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET,
pname:descriptorSetLayout must: be a valid sname:VkDescriptorSetLayout
handle
ifdef::VK_KHR_push_descriptor[]
* [[VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00351]]
If pname:templateType is
ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR,
pname:pipelineBindPoint must: be a valid elink:VkPipelineBindPoint value
* [[VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00352]]
If pname:templateType is
ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR,
pname:pipelineLayout must: be a valid sname:VkPipelineLayout handle
* [[VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00353]]
If pname:templateType is
ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR, pname:set
must: be the unique set number in the pipeline layout that uses a
descriptor set layout that was created with
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR
endif::VK_KHR_push_descriptor[]
****
include::../validity/structs/VkDescriptorUpdateTemplateCreateInfo.txt[]
--
[open,refpage='VkDescriptorUpdateTemplateCreateFlags',desc='Reserved for future use',type='enums']
--
include::../api/flags/VkDescriptorUpdateTemplateCreateFlags.txt[]
ifdef::VK_KHR_descriptor_update_template[]
or the equivalent
include::../api/flags/VkDescriptorUpdateTemplateCreateFlagsKHR.txt[]
endif::VK_KHR_descriptor_update_template[]
sname:VkDescriptorUpdateTemplateCreateFlags is a bitmask type for setting a
mask, but is currently reserved for future use.
--
[open,refpage='VkDescriptorUpdateTemplateType',desc='Indicates the valid usage of the descriptor update template',type='enums']
--
The descriptor update template type is determined by the
slink:VkDescriptorUpdateTemplateCreateInfo::pname:templateType property,
which takes the following values:
include::../api/enums/VkDescriptorUpdateTemplateType.txt[]
ifdef::VK_KHR_descriptor_update_template[]
or the equivalent
include::../api/enums/VkDescriptorUpdateTemplateTypeKHR.txt[]
endif::VK_KHR_descriptor_update_template[]
* ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET specifies that
the descriptor update template will be used for descriptor set updates
only.
ifdef::VK_KHR_push_descriptor[]
* ename:VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR specifies
that the descriptor update template will be used for push descriptor
updates only.
endif::VK_KHR_push_descriptor[]
--
[open,refpage='VkDescriptorUpdateTemplateEntry',desc='Describes a single descriptor update of the descriptor update template',type='structs']
--
The sname:VkDescriptorUpdateTemplateEntry structure is defined as:
include::../api/structs/VkDescriptorUpdateTemplateEntry.txt[]
ifdef::VK_KHR_descriptor_update_template[]
or the equivalent
include::../api/structs/VkDescriptorUpdateTemplateEntryKHR.txt[]
endif::VK_KHR_descriptor_update_template[]
* pname:dstBinding is the descriptor binding to update when using this
descriptor update template.
* pname:dstArrayElement is the starting element in the array belonging to
pname:dstBinding.
* pname:descriptorCount is the number of descriptors to update.
If pname:descriptorCount is greater than the number of remaining array
elements in the destination binding, those affect consecutive bindings
in a manner similar to slink:VkWriteDescriptorSet above.
* pname:descriptorType is a elink:VkDescriptorType specifying the type of
the descriptor.
* pname:offset is the offset in bytes of the first binding in the raw data
structure.
* pname:stride is the stride in bytes between two consecutive array
elements of the descriptor update informations in the raw data
structure.
The actual pointer ptr for each array element j of update entry i is
computed using the following formula:
+
[source,c++]
---------------------------------------------------
const char *ptr = (const char *)pData + pDescriptorUpdateEntries[i].offset + j * pDescriptorUpdateEntries[i].stride
---------------------------------------------------
+
The stride is useful in case the bindings are stored in structs along with
other data.
.Valid Usage
****
* [[VUID-VkDescriptorUpdateTemplateEntry-dstBinding-00354]]
pname:dstBinding must: be a valid binding in the descriptor set layout
implicitly specified when using a descriptor update template to update
descriptors.
* [[VUID-VkDescriptorUpdateTemplateEntry-dstArrayElement-00355]]
pname:dstArrayElement and pname:descriptorCount must: be less than or
equal to the number of array elements in the descriptor set binding
implicitly specified when using a descriptor update template to update
descriptors, and all applicable consecutive bindings, as described by
<<descriptorsets-updates-consecutive>>
****
include::../validity/structs/VkDescriptorUpdateTemplateEntry.txt[]
--
[open,refpage='vkDestroyDescriptorUpdateTemplate',desc='Destroy a descriptor update template object',type='protos']
--
To destroy a descriptor update template, call:
ifdef::VK_VERSION_1_1[]
include::../api/protos/vkDestroyDescriptorUpdateTemplate.txt[]
endif::VK_VERSION_1_1[]
ifdef::VK_VERSION_1_1+VK_KHR_descriptor_update_template[or the equivalent command]
ifdef::VK_KHR_descriptor_update_template[]
include::../api/protos/vkDestroyDescriptorUpdateTemplateKHR.txt[]
endif::VK_KHR_descriptor_update_template[]
* pname:device is the logical device that has been used to create the
descriptor update template
* pname:descriptorUpdateTemplate is the descriptor update template to
destroy.
* pname:pAllocator controls host memory allocation as described in the
<<memory-allocation, Memory Allocation>> chapter.
.Valid Usage
****
* [[VUID-vkDestroyDescriptorUpdateTemplate-descriptorSetLayout-00356]]
If sname:VkAllocationCallbacks were provided when
pname:descriptorSetLayout was created, a compatible set of callbacks
must: be provided here
* [[VUID-vkDestroyDescriptorUpdateTemplate-descriptorSetLayout-00357]]
If no sname:VkAllocationCallbacks were provided when
pname:descriptorSetLayout was created, pname:pAllocator must: be `NULL`
****
include::../validity/protos/vkDestroyDescriptorUpdateTemplate.txt[]
--
[open,refpage='vkUpdateDescriptorSetWithTemplate',desc='Update the contents of a descriptor set object using an update template',type='protos']
--
Once a sname:VkDescriptorUpdateTemplate has been created, descriptor sets
can: be updated by calling:
ifdef::VK_VERSION_1_1[]
include::../api/protos/vkUpdateDescriptorSetWithTemplate.txt[]
endif::VK_VERSION_1_1[]
ifdef::VK_VERSION_1_1+VK_KHR_descriptor_update_template[or the equivalent command]
ifdef::VK_KHR_descriptor_update_template[]
include::../api/protos/vkUpdateDescriptorSetWithTemplateKHR.txt[]
endif::VK_KHR_descriptor_update_template[]
* pname:device is the logical device that updates the descriptor sets.
* pname:descriptorSet is the descriptor set to update
* pname:descriptorUpdateTemplate is the slink:VkDescriptorUpdateTemplate
which specifies the update mapping between pname:pData and the
descriptor set to update.
* pname:pData is a pointer to memory which contains one or more structures
of slink:VkDescriptorImageInfo, slink:VkDescriptorBufferInfo, or
slink:VkBufferView used to write the descriptors.
.Valid Usage
****
* [[VUID-vkUpdateDescriptorSetWithTemplate-pData-01685]]
pname:pData must: be a valid pointer to a memory that contains one or
more valid instances of slink:VkDescriptorImageInfo,
slink:VkDescriptorBufferInfo, or slink:VkBufferView in a layout defined
by pname:descriptorUpdateTemplate when it was created with
flink:vkCreateDescriptorUpdateTemplate
****
include::../validity/protos/vkUpdateDescriptorSetWithTemplate.txt[]
.API example
[source,c++]
---------------------------------------------------
struct AppBufferView {
VkBufferView bufferView;
uint32_t applicationRelatedInformation;
};
struct AppDataStructure
{
VkDescriptorImageInfo imageInfo; // a single image info
VkDescriptorBufferInfo bufferInfoArray[3]; // 3 buffer infos in an array
AppBufferView bufferView[2]; // An application defined structure containing a bufferView
// ... some more application related data
};
const VkDescriptorUpdateTemplateEntry descriptorUpdateTemplateEntries[] =
{
// binding to a single image descriptor
{
0, // binding
0, // dstArrayElement
1, // descriptorCount
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // descriptorType
offsetof(AppDataStructure, imageInfo), // offset
0 // stride is not required if descriptorCount is 1.
},
// binding to an array of buffer descriptors
{
0, // binding
0, // dstArrayElement
3, // descriptorCount
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, // descriptorType
offsetof(AppDataStructure, bufferInfoArray), // offset
sizeof(VkDescriptorBufferInfo) // stride, descriptor buffer infos are compact
},
// binding to an array of buffer views
{
0, // binding
3, // dstArrayElement
1, // descriptorCount
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, // descriptorType
offsetof(AppDataStructure, bufferView), // offset
sizeof(AppBufferView) // stride, bufferViews do not have to be compact
},
};
// create an descriptor update template for descriptor set updates
const VkDescriptorUpdateTemplateCreateInfo createInfo =
{
VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO, // sType
NULL, // pNext
0, // flags
3, // descriptorUpdateEntryCount
descriptorUpdateTemplateEntries, // pDescriptorUpdateEntries
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET, // templateType
myLayout, // descriptorSetLayout
0, // pipelineBindPoint, ignored by given templateType
0, // pipelineLayout, ignored by given templateType
0, // set, ignored by given templateType
};
VkDescriptorUpdateTemplate myDescriptorUpdateTemplate;
myResult = vkCreateDescriptorUpdateTemplate(
myDevice,
&createInfo,
NULL,
&myDescriptorUpdateTemplate);
}
AppDataStructure appData;
// fill appData here or cache it in your engine
vkUpdateDescriptorSetWithTemplate(myDevice, myDescriptorSet, myDescriptorUpdateTemplate, &appData);
---------------------------------------------------
--
endif::VK_VERSION_1_1,VK_KHR_descriptor_update_template[]
[[descriptorsets-binding]]
=== Descriptor Set Binding
[open,refpage='vkCmdBindDescriptorSets',desc='Binds descriptor sets to a command buffer',type='protos']
--
To bind one or more descriptor sets to a command buffer, call:
include::../api/protos/vkCmdBindDescriptorSets.txt[]
* pname:commandBuffer is the command buffer that the descriptor sets will
be bound to.
* pname:pipelineBindPoint is a elink:VkPipelineBindPoint indicating
whether the descriptors will be used by graphics pipelines or compute
pipelines.
There is a separate set of bind points for each of graphics and compute,
so binding one does not disturb the other.
* pname:layout is a slink:VkPipelineLayout object used to program the
bindings.
* pname:firstSet is the set number of the first descriptor set to be
bound.
* pname:descriptorSetCount is the number of elements in the
pname:pDescriptorSets array.
* pname:pDescriptorSets is an array of handles to slink:VkDescriptorSet
objects describing the descriptor sets to write to.
* pname:dynamicOffsetCount is the number of dynamic offsets in the
pname:pDynamicOffsets array.
* pname:pDynamicOffsets is a pointer to an array of code:uint32_t values
specifying dynamic offsets.
fname:vkCmdBindDescriptorSets causes the sets numbered [pname:firstSet..
pname:firstSet+pname:descriptorSetCount-1] to use the bindings stored in
pname:pDescriptorSets[0..pname:descriptorSetCount-1] for subsequent
rendering commands (either compute or graphics, according to the
pname:pipelineBindPoint).
Any bindings that were previously applied via these sets are no longer
valid.
Once bound, a descriptor set affects rendering of subsequent graphics or
compute commands in the command buffer until a different set is bound to the
same set number, or else until the set is disturbed as described in
<<descriptorsets-compatibility, Pipeline Layout Compatibility>>.
A compatible descriptor set must: be bound for all set numbers that any
shaders in a pipeline access, at the time that a draw or dispatch command is
recorded to execute using that pipeline.
However, if none of the shaders in a pipeline statically use any bindings
with a particular set number, then no descriptor set need be bound for that
set number, even if the pipeline layout includes a non-trivial descriptor
set layout for that set number.
[[descriptorsets-binding-dynamicoffsets]]
If any of the sets being bound include dynamic uniform or storage buffers,
then pname:pDynamicOffsets includes one element for each array element in
each dynamic descriptor type binding in each set.
Values are taken from pname:pDynamicOffsets in an order such that all
entries for set N come before set N+1; within a set, entries are ordered by
the binding numbers in the descriptor set layouts; and within a binding
array, elements are in order.
pname:dynamicOffsetCount must: equal the total number of dynamic descriptors
in the sets being bound.
The effective offset used for dynamic uniform and storage buffer bindings is
the sum of the relative offset taken from pname:pDynamicOffsets, and the
base address of the buffer plus base offset in the descriptor set.
The range of the dynamic uniform and storage buffer bindings is the buffer
range as specified in the descriptor set.
Each of the pname:pDescriptorSets must: be compatible with the pipeline
layout specified by pname:layout.
The layout used to program the bindings must: also be compatible with the
pipeline used in subsequent graphics or compute commands, as defined in the
<<descriptorsets-compatibility, Pipeline Layout Compatibility>> section.
The descriptor set contents bound by a call to fname:vkCmdBindDescriptorSets
may: be consumed at the following times:
ifdef::VK_EXT_descriptor_indexing[]
* For descriptor bindings created with the
ename:VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT bit set, the
contents may: be consumed when the command buffer is submitted to a
queue, or during shader execution of the resulting draws and dispatches,
or any time in between.
Otherwise,
endif::VK_EXT_descriptor_indexing[]
* during host execution of the command, or during shader execution of the
resulting draws and dispatches, or any time in between.
Thus, the contents of a descriptor set binding must: not be altered
(overwritten by an update command, or freed) between the first point in time
that it may: be consumed, and when the command completes executing on the
queue.
The contents of pname:pDynamicOffsets are consumed immediately during
execution of fname:vkCmdBindDescriptorSets.
Once all pending uses have completed, it is legal to update and reuse a
descriptor set.
.Valid Usage
****
* [[VUID-vkCmdBindDescriptorSets-pDescriptorSets-00358]]
Each element of pname:pDescriptorSets must: have been allocated with a
sname:VkDescriptorSetLayout that matches (is the same as, or identically
defined as) the sname:VkDescriptorSetLayout at set _n_ in pname:layout,
where _n_ is the sum of pname:firstSet and the index into
pname:pDescriptorSets
* [[VUID-vkCmdBindDescriptorSets-dynamicOffsetCount-00359]]
pname:dynamicOffsetCount must: be equal to the total number of dynamic
descriptors in pname:pDescriptorSets
* [[VUID-vkCmdBindDescriptorSets-firstSet-00360]]
The sum of pname:firstSet and pname:descriptorSetCount must: be less
than or equal to sname:VkPipelineLayoutCreateInfo::pname:setLayoutCount
provided when pname:layout was created
* [[VUID-vkCmdBindDescriptorSets-pipelineBindPoint-00361]]
pname:pipelineBindPoint must: be supported by the pname:commandBuffer's
parent sname:VkCommandPool's queue family
* [[VUID-vkCmdBindDescriptorSets-pDynamicOffsets-01971]]
Each element of pname:pDynamicOffsets which corresponds to a descriptor
binding with type ename:VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must:
be a multiple of
sname:VkPhysicalDeviceLimits::pname:minUniformBufferOffsetAlignment
* [[VUID-vkCmdBindDescriptorSets-pDynamicOffsets-01972]]
Each element of pname:pDynamicOffsets which corresponds to a descriptor
binding with type ename:VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must:
be a multiple of
sname:VkPhysicalDeviceLimits::pname:minStorageBufferOffsetAlignment
* [[VUID-vkCmdBindDescriptorSets-pDescriptorSets-01979]]
For each dynamic uniform or storage buffer binding in
pname:pDescriptorSets, the sum of the effective offset, as defined
above, and the range of the binding must: be less than or equal to the
size of the buffer
****
include::../validity/protos/vkCmdBindDescriptorSets.txt[]
--
ifdef::VK_KHR_push_descriptor[]
[[descriptorsets-push-descriptors]]
=== Push Descriptor Updates
[open,refpage='vkCmdPushDescriptorSetKHR',desc='Pushes descriptor updates into a command buffer',type='protos']
--
In addition to allocating descriptor sets and binding them to a command
buffer, an application can: record descriptor updates into the command
buffer.
To push descriptor updates into a command buffer, call:
include::../api/protos/vkCmdPushDescriptorSetKHR.txt[]
* pname:commandBuffer is the command buffer that the descriptors will be
recorded in.
* pname:pipelineBindPoint is a elink:VkPipelineBindPoint indicating
whether the descriptors will be used by graphics pipelines or compute
pipelines.
There is a separate set of push descriptor bindings for each of graphics
and compute, so binding one does not disturb the other.
* pname:layout is a slink:VkPipelineLayout object used to program the
bindings.
* pname:set is the set number of the descriptor set in the pipeline layout
that will be updated.
* pname:descriptorWriteCount is the number of elements in the
pname:pDescriptorWrites array.
* pname:pDescriptorWrites is a pointer to an array of
slink:VkWriteDescriptorSet structures describing the descriptors to be
updated.
_Push descriptors_ are a small bank of descriptors whose storage is
internally managed by the command buffer rather than being written into a
descriptor set and later bound to a command buffer.
Push descriptors allow for incremental updates of descriptors without
managing the lifetime of descriptor sets.
When a command buffer begins recording, all push descriptors have undefined
contents.
Push descriptors can: be updated incrementally and cause shaders to use the
updated descriptors for subsequent rendering commands (either compute or
graphics, according to the pname:pipelineBindPoint) until the descriptor is
overwritten, or else until the set is disturbed as described in
<<descriptorsets-compatibility, Pipeline Layout Compatibility>>.
When the set is disturbed or push descriptors with a different descriptor
set layout are set, all push descriptors become invalid.
Valid descriptors must: be pushed for all bindings that any shaders in a
pipeline access, at the time that a draw or dispatch command is recorded to
execute using that pipeline.
This includes immutable sampler descriptors, which must: be pushed before
they are accessed by a pipeline.
However, if none of the shaders in a pipeline statically use certain
bindings in the push descriptor set, then those descriptors need not be
valid.
Push descriptors do not use dynamic offsets.
Instead, the corresponding non-dynamic descriptor types can: be used and the
pname:offset member of slink:VkDescriptorBufferInfo can: be changed each
time the descriptor is written.
Each element of pname:pDescriptorWrites is interpreted as in
slink:VkWriteDescriptorSet, except the pname:dstSet member is ignored.
To push an immutable sampler, use a slink:VkWriteDescriptorSet with
pname:dstBinding and pname:dstArrayElement selecting the immutable sampler's
binding.
If the descriptor type is ename:VK_DESCRIPTOR_TYPE_SAMPLER, the
pname:pImageInfo parameter is ignored and the immutable sampler is taken
from the push descriptor set layout in the pipeline layout.
If the descriptor type is ename:VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
the pname:sampler member of the pname:pImageInfo parameter is ignored and
the immutable sampler is taken from the push descriptor set layout in the
pipeline layout.
.Valid Usage
****
* [[VUID-vkCmdPushDescriptorSetKHR-pipelineBindPoint-00363]]
pname:pipelineBindPoint must: be supported by the pname:commandBuffer's
parent sname:VkCommandPool's queue family
* [[VUID-vkCmdPushDescriptorSetKHR-set-00364]]
pname:set must: be less than
sname:VkPipelineLayoutCreateInfo::pname:setLayoutCount provided when
pname:layout was created
* [[VUID-vkCmdPushDescriptorSetKHR-set-00365]]
pname:set must: be the unique set number in the pipeline layout that
uses a descriptor set layout that was created with
ename:VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR
****
include::../validity/protos/vkCmdPushDescriptorSetKHR.txt[]
--
ifdef::VK_VERSION_1_1,VK_KHR_descriptor_update_template[]
=== Push Descriptor Updates with Descriptor Update Templates
[open,refpage='vkCmdPushDescriptorSetWithTemplateKHR',desc='Pushes descriptor updates into a command buffer using a descriptor update template',type='protos']
--
It is also possible to use a descriptor update template to specify the push
descriptors to update.
To do so, call:
include::../api/protos/vkCmdPushDescriptorSetWithTemplateKHR.txt[]
* pname:commandBuffer is the command buffer that the descriptors will be
recorded in.
* pname:descriptorUpdateTemplate A descriptor update template which
defines how to interpret the descriptor information in pData.
* pname:layout is a slink:VkPipelineLayout object used to program the
bindings.
It must: be compatible with the layout used to create the
pname:descriptorUpdateTemplate handle.
* pname:set is the set number of the descriptor set in the pipeline layout
that will be updated.
This must: be the same number used to create the
pname:descriptorUpdateTemplate handle.
* pname:pData Points to memory which contains the descriptors for the
templated update.
.Valid Usage
****
* [[VUID-vkCmdPushDescriptorSetWithTemplateKHR-commandBuffer-00366]]
The pipelineBindPoint specified during the creation of the descriptor
update template must: be supported by the pname:commandBuffer's parent
sname:VkCommandPool's queue family
* [[VUID-vkCmdPushDescriptorSetWithTemplateKHR-pData-01686]]
pname:pData must: be a valid pointer to a memory that contains one or
more valid instances of slink:VkDescriptorImageInfo,
slink:VkDescriptorBufferInfo, or slink:VkBufferView in a layout defined
by pname:descriptorUpdateTemplate when it was created with
flink:vkCreateDescriptorUpdateTemplateKHR
****
include::../validity/protos/vkCmdPushDescriptorSetWithTemplateKHR.txt[]
.API example
[source,c++]
---------------------------------------------------
struct AppBufferView {
VkBufferView bufferView;
uint32_t applicationRelatedInformation;
};
struct AppDataStructure
{
VkDescriptorImageInfo imageInfo; // a single image info
// ... some more application related data
};
const VkDescriptorUpdateTemplateEntry descriptorUpdateTemplateEntries[] =
{
// binding to a single image descriptor
{
0, // binding
0, // dstArrayElement
1, // descriptorCount
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // descriptorType
offsetof(AppDataStructure, imageInfo), // offset
0 // stride is not required if descriptorCount is 1.
}
};
// create an descriptor update template for descriptor set updates
const VkDescriptorUpdateTemplateCreateInfo createInfo =
{
VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO, // sType
NULL, // pNext
0, // flags
1, // descriptorUpdateEntryCount
descriptorUpdateTemplateEntries, // pDescriptorUpdateEntries
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR, // templateType
0, // descriptorSetLayout, ignored by given templateType
VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint
myPipelineLayout, // pipelineLayout
0, // set
};
VkDescriptorUpdateTemplate myDescriptorUpdateTemplate;
myResult = vkCreateDescriptorUpdateTemplate(
myDevice,
&createInfo,
NULL,
&myDescriptorUpdateTemplate);
}
AppDataStructure appData;
// fill appData here or cache it in your engine
vkCmdPushDescriptorSetWithTemplateKHR(myCmdBuffer, myDescriptorUpdateTemplate, myPipelineLayout, 0,&appData);
---------------------------------------------------
--
endif::VK_VERSION_1_1,VK_KHR_descriptor_update_template[]
endif::VK_KHR_push_descriptor[]
=== Push Constant Updates
[[descriptorsets-push-constants]]
As described above in section <<descriptorsets-pipelinelayout, Pipeline
Layouts>>, the pipeline layout defines shader push constants which are
updated via Vulkan commands rather than via writes to memory or copy
commands.
[NOTE]
.Note
====
Push constants represent a high speed path to modify constant data in
pipelines that is expected to outperform memory-backed resource updates.
====
The values of push constants are undefined at the start of a command buffer.
[open,refpage='vkCmdPushConstants',desc='Update the values of push constants',type='protos']
--
To update push constants, call:
include::../api/protos/vkCmdPushConstants.txt[]
* pname:commandBuffer is the command buffer in which the push constant
update will be recorded.
* pname:layout is the pipeline layout used to program the push constant
updates.
* pname:stageFlags is a bitmask of elink:VkShaderStageFlagBits specifying
the shader stages that will use the push constants in the updated range.
* pname:offset is the start offset of the push constant range to update,
in units of bytes.
* pname:size is the size of the push constant range to update, in units of
bytes.
* pname:pValues is an array of pname:size bytes containing the new push
constant values.
.Valid Usage
****
* [[VUID-vkCmdPushConstants-offset-01795]]
For each byte in the range specified by pname:offset and pname:size and
for each shader stage in pname:stageFlags, there must: be a push
constant range in pname:layout that includes that byte and that stage
* [[VUID-vkCmdPushConstants-offset-01796]]
For each byte in the range specified by pname:offset and pname:size and
for each push constant range that overlaps that byte, pname:stageFlags
must: include all stages in that push constant range's
slink:VkPushConstantRange::pname:stageFlags
* [[VUID-vkCmdPushConstants-offset-00368]]
pname:offset must: be a multiple of `4`
* [[VUID-vkCmdPushConstants-size-00369]]
pname:size must: be a multiple of `4`
* [[VUID-vkCmdPushConstants-offset-00370]]
pname:offset must: be less than
sname:VkPhysicalDeviceLimits::pname:maxPushConstantsSize
* [[VUID-vkCmdPushConstants-size-00371]]
pname:size must: be less than or equal to
sname:VkPhysicalDeviceLimits::pname:maxPushConstantsSize minus
pname:offset
****
include::../validity/protos/vkCmdPushConstants.txt[]
--