// Copyright (c) 2015-2017 The Khronos Group Inc. // Copyright notice at https://www.khronos.org/registry/speccopyright.html [[vertexpostproc]] = Fixed-Function Vertex Post-Processing After programmable vertex processing, the following fixed-function operations are applied to vertices of the resulting primitives: ifdef::VK_NV_viewport_swizzle[] * Viewport swizzle (see <>) endif::VK_NV_viewport_swizzle[] * Flatshading (see <>). * Primitive clipping, including client-defined half-spaces (see <>). * Shader output attribute clipping (see <>). ifdef::VK_NV_clip_space_w_scaling[] * Clip space W scaling (see <>). endif::VK_NV_clip_space_w_scaling[] * Perspective division on clip coordinates (see <>). * Viewport mapping, including depth range scaling (see <>). * Front face determination for polygon primitives (see <>). ifdef::editing-notes[] [NOTE] .editing-note ==== TODO:Odd that this one link to a different chapter is in this list. ==== endif::editing-notes[] Next, rasterization is performed on primitives as described in chapter <>. ifdef::VK_NV_viewport_swizzle[] [[vertexpostproc-viewport-swizzle]] == Viewport Swizzle Each primitive sent to a given viewport has a swizzle and optional negation applied to its clip coordinates. The swizzle that is applied depends on the viewport index, and is controlled by the sname:VkPipelineViewportSwizzleStateCreateInfoNV pipeline state: include::../api/structs/VkPipelineViewportSwizzleStateCreateInfoNV.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:flags is reserved for future use. * pname:viewportCount is the number of viewport swizzles used by the pipeline. * pname:pViewportSwizzles is a pointer to an array of slink:VkViewportSwizzleNV structures, defining the viewport swizzles. .Valid Usage **** * pname:viewportCount must: match the pname:viewportCount set in sname:VkPipelineViewportStateCreateInfo **** include::../validity/structs/VkPipelineViewportSwizzleStateCreateInfoNV.txt[] The sname:VkPipelineViewportSwizzleStateCreateInfoNV state is set by chaining an instance of this structure to the pname:pNext of an instance of the sname:VkPipelineViewportStateCreateInfo structure and setting the graphics pipeline state with flink:vkCreateGraphicsPipelines. Each viewport specified from 0 to pname:viewportCount - 1 has its x,y,z,w swizzle state set to the corresponding pname:x, pname:y, pname:z and pname:w in the slink:VkViewportSwizzleNV structure. Each component is of type elink:VkViewportCoordinateSwizzleNV, which determines the type of swizzle for that component. The value of pname:x computes the new x component of the position as: if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV) x' = x; if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV) x' = -x; if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV) x' = y; if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV) x' = -y; if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV) x' = z; if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV) x' = -z; if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV) x' = w; if (x == VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV) x' = -w; Similar selections are performed for the pname:y, pname:z, and pname:w coordinates. This swizzling is applied before clipping and perspective divide. If the swizzle for an active viewport index is not specified, the swizzle for pname:x is ename:VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV, pname:y is ename:VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV, pname:z is ename:VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV and pname:w is ename:VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV. Viewport swizzle parameters are specified by setting the pname:pNext pointer of sname:VkGraphicsPipelineCreateInfo to point to an instance of sname:VkPipelineViewportSwizzleStateCreateInfoNV. slink:VkPipelineViewportSwizzleStateCreateInfoNV uses sname:VkViewportSwizzleNV to set the viewport swizzle parameters. // refBegin VkViewportSwizzleNV Structure specifying a viewport swizzle The sname:VkViewportSwizzleNV structure is defined as: include::../api/structs/VkViewportSwizzleNV.txt[] * pname:x is the swizzle operation to apply to the x component of the primitive * pname:y is the swizzle operation to apply to the y component of the primitive * pname:z is the swizzle operation to apply to the z component of the primitive * pname:w is the swizzle operation to apply to the w component of the primitive include::../validity/structs/VkViewportSwizzleNV.txt[] The ename:VkViewportCoordinateSwizzleNV enum is defined as: include::../api/enums/VkViewportCoordinateSwizzleNV.txt[] endif::VK_NV_viewport_swizzle[] [[vertexpostproc-flatshading]] == Flat Shading _Flat shading_ a vertex output attribute means to assign all vertices of the primitive the same value for that output. The output values assigned are those of the _provoking vertex_ of the primitive. The provoking vertex depends on the primitive topology, and is generally the "`first`" vertex of the primitive. For primitives not processed by tessellation or geometry shaders, the provoking vertex is selected from the input vertices according to the following table. <<< [[provoking-vertex-selection]] .Provoking vertex selection [align="center",cols="75%,25%"] |==== | Primitive type of primitive [eq]#i# | Provoking vertex number | ename:VK_PRIMITIVE_TOPOLOGY_POINT_LIST | [eq]#i# | ename:VK_PRIMITIVE_TOPOLOGY_LINE_LIST | [eq]#2 i# | ename:VK_PRIMITIVE_TOPOLOGY_LINE_STRIP | [eq]#i# | ename:VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST | [eq]#3 i# | ename:VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP | [eq]#i# | ename:VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN | [eq]#i + 1# | ename:VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY | [eq]#4 i + 1# | ename:VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY | [eq]#i + 1# | ename:VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY | [eq]#6 i# | ename:VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY | [eq]#2 i# |==== .Caption **** The <> table defines the output values used for flat shading the i^th^ primitive generated by drawing commands with the indicated primitive type, derived from the corresponding values of the vertex whose index is shown in the table. Primitives and vertices are numbered starting from zero. **** Flat shading is applied to those vertex attributes that <> fragment input attributes which are decorated as code:Flat. If a geometry shader is active, the output primitive topology is either points, line strips, or triangle strips, and the selection of the provoking vertex behaves according to the corresponding row of the table. If a tessellation evaluation shader is active and a geometry shader is not active, the provoking vertex is undefined but must: be one of the vertices of the primitive. [[vertexpostproc-clipping]] == Primitive Clipping Primitives are culled against the _cull volume_ and then clipped to the _clip volume_. In clip coordinates, the _view volume_ is defined by: [latexmath] ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \begin{array}{c} -w_c \leq x_c \leq w_c \\ -w_c \leq y_c \leq w_c \\ 0 \leq z_c \leq w_c \end{array} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ This view volume can: be further restricted by as many as sname:VkPhysicalDeviceLimits::pname:maxClipDistances client-defined half-spaces. The cull volume is the intersection of up to sname:VkPhysicalDeviceLimits::pname:maxCullDistances client-defined half-spaces (if no client-defined cull half-spaces are enabled, culling against the cull volume is skipped). A shader must: write a single cull distance for each enabled cull half-space to elements of the code:CullDistance array. If the cull distance for any enabled cull half-space is negative for all of the vertices of the primitive under consideration, the primitive is discarded. Otherwise the primitive is clipped against the clip volume as defined below. The clip volume is the intersection of up to sname:VkPhysicalDeviceLimits::pname:maxClipDistances client-defined half-spaces with the view volume (if no client-defined clip half-spaces are enabled, the clip volume is the view volume). A shader must: write a single clip distance for each enabled clip half-space to elements of the code:ClipDistance array. Clip half-space [eq]#i# is then given by the set of points satisfying the inequality :: [eq]#c~i~(**P**) {geq} 0# where [eq]#c~i~(**P**)# is the clip distance [eq]#i# at point [eq]#**P**#. For point primitives, [eq]#c~i~(**P**)# is simply the clip distance for the vertex in question. For line and triangle primitives, per-vertex clip distances are interpolated using a weighted mean, with weights derived according to the algorithms described in sections <> and <>, using the perspective interpolation equations. The number of client-defined clip and cull half-spaces that are enabled is determined by the explicit size of the built-in arrays code:ClipDistance and code:CullDistance, respectively, declared as an output in the interface of the entry point of the final shader stage before clipping. Depth clamping is enabled or disabled via the pname:depthClampEnable enable of the sname:VkPipelineRasterizationStateCreateInfo structure. If depth clamping is enabled, the plane equation :: [eq]#0 {leq} z~c~ {leq} w~c~# (see the clip volume definition above) is ignored by view volume clipping (effectively, there is no near or far plane clipping). If the primitive under consideration is a point or line segment, then clipping passes it unchanged if its vertices lie entirely within the clip volume. If a point's vertex lies outside of the clip volume, the entire primitive may: be discarded. If either of a line segment's vertices lie outside of the clip volume, the line segment may: be clipped, with new vertex coordinates computed for each vertex that lies outside the clip volume. A clipped line segment endpoint lies on both the original line segment and the boundary of the clip volume. This clipping produces a value, [eq]#0 {leq} t {leq} 1#, for each clipped vertex. If the coordinates of a clipped vertex are [eq]#**P**# and the original vertices' coordinates are [eq]#**P**~1~# and [eq]#**P**~2~#, then [eq]#t# is given by :: [eq]#**P** = t **P**~1~ + (1-t) **P**~2~#. ifdef::editing-notes[] [NOTE] .editing-note ==== This is weird - it gives **P**, not t. ==== endif::editing-notes[] [eq]#t# is used to clip vertex output attributes as described in <>. If the primitive is a polygon, it passes unchanged if every one of its edges lie entirely inside the clip volume, and it is discarded if every one of its edges lie entirely outside the clip volume. If the edges of the polygon intersect the boundary of the clip volume, the intersecting edges are reconnected by new edges that lie along the boundary of the clip volume - in some cases requiring the introduction of new vertices into a polygon. If a polygon intersects an edge of the clip volume's boundary, the clipped polygon must: include a point on this boundary edge. Primitives rendered with user-defined half-spaces must: satisfy a complementarity criterion. Suppose a series of primitives is drawn where each vertex [eq]#i# has a single specified clip distance [eq]#d~i~# (or a number of similarly specified clip distances, if multiple half-spaces are enabled). Next, suppose that the same series of primitives are drawn again with each such clip distance replaced by [eq]#-d~i~# (and the graphics pipeline is otherwise the same). In this case, primitives must: not be missing any pixels, and pixels must: not be drawn twice in regions where those primitives are cut by the clip planes. [[vertexpostproc-clipping-shader-outputs]] == Clipping Shader Outputs Next, vertex output attributes are clipped. The output values associated with a vertex that lies within the clip volume are unaffected by clipping. If a primitive is clipped, however, the output values assigned to vertices produced by clipping are clipped. Let the output values assigned to the two vertices [eq]#**P**~1~# and [eq]#**P**~2~# of an unclipped edge be [eq]#**c**~1~# and [eq]#**c**~2~#. The value of [eq]#t# (see <>) for a clipped point [eq]#**P**# is used to obtain the output value associated with [eq]#**P**# as :: [eq]#**c** = t **c**~1~ + (1-t) **c**~2~#. (Multiplying an output value by a scalar means multiplying each of _x_, _y_, _z_, and _w_ by the scalar.) Since this computation is performed in clip space before division by [eq]#w~c~#, clipped output values are perspective-correct. Polygon clipping creates a clipped vertex along an edge of the clip volume's boundary. This situation is handled by noting that polygon clipping proceeds by clipping against one half-space at a time. Output value clipping is done in the same way, so that clipped points always occur at the intersection of polygon edges (possibly already clipped) with the clip volume's boundary. For vertex output attributes whose matching fragment input attributes are decorated with code:NoPerspective, the value of [eq]#t# used to obtain the output value associated with [eq]#**P**# will be adjusted to produce results that vary linearly in framebuffer space. Output attributes of integer or unsigned integer type must: always be flat shaded. Flat shaded attributes are constant over the primitive being rasterized (see <> and <>), and no interpolation is performed. The output value [eq]#**c**# is taken from either [eq]#**c**~1~# or [eq]#**c**~2~#, since flat shading has already occurred and the two values are identical. ifdef::VK_NV_clip_space_w_scaling[] include::VK_NV_clip_space_w_scaling/vertexpostproc.txt[] endif::VK_NV_clip_space_w_scaling[] [[vertexpostproc-coord-transform]] == Coordinate Transformations _Clip coordinates_ for a vertex result from shader execution, which yields a vertex coordinate code:Position. Perspective division on clip coordinates yields _normalized device coordinates_, followed by a _viewport_ transformation (see <>) to convert these coordinates into _framebuffer coordinates_. If a vertex in clip coordinates has a position given by [latexmath] ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \left(\begin{array}{c} x_c \\ y_c \\ z_c \\ w_c \end{array}\right) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ then the vertex's normalized device coordinates are [latexmath] ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \left( \begin{array}{c} x_d \\ y_d \\ z_d \end{array} \right) = \left( \begin{array}{c} \frac{x_c}{w_c} \\ \frac{y_c}{w_c} \\ \frac{z_c}{w_c} \end{array} \right) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ [[vertexpostproc-viewport]] == Controlling the Viewport The viewport transformation is determined by the selected viewport's width and height in pixels, [eq]#p~x~# and [eq]#p~y~#, respectively, and its center [eq]#(o~x~, o~y~)# (also in pixels), as well as its depth range min and max determining a depth range scale value [eq]#p~z~# and a depth range bias value [eq]#o~z~# (defined below). The vertex's framebuffer coordinates [eq]#(x~f~, y~f~, z~f~)# are given by :: [eq]#x~f~ = (p~x~ / 2) x~d~ + o~x~# :: [eq]#y~f~ = (p~y~ / 2) y~d~ + o~y~# :: [eq]#z~f~ = p~z~ {times} z~d~ + o~z~# Multiple viewports are available, numbered zero up to sname:VkPhysicalDeviceLimits::pname:maxViewports minus one. The number of viewports used by a pipeline is controlled by the pname:viewportCount member of the sname:VkPipelineViewportStateCreateInfo structure used in pipeline creation. // refBegin VkPipelineViewportStateCreateInfo Structure specifying parameters of a newly created pipeline viewport state The sname:VkPipelineViewportStateCreateInfo structure is defined as: include::../api/structs/VkPipelineViewportStateCreateInfo.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:flags is reserved for future use. * pname:viewportCount is the number of viewports used by the pipeline. * pname:pViewports is a pointer to an array of slink:VkViewport structures, defining the viewport transforms. If the viewport state is dynamic, this member is ignored. * pname:scissorCount is the number of <> and must: match the number of viewports. * pname:pScissors is a pointer to an array of sname:VkRect2D structures which define the rectangular bounds of the scissor for the corresponding viewport. If the scissor state is dynamic, this member is ignored. .Valid Usage **** * If the <> feature is not enabled, pname:viewportCount must: be `1` * If the <> feature is not enabled, pname:scissorCount must: be `1` * pname:viewportCount must: be between `1` and sname:VkPhysicalDeviceLimits::pname:maxViewports, inclusive * pname:scissorCount must: be between `1` and sname:VkPhysicalDeviceLimits::pname:maxViewports, inclusive * pname:scissorCount and pname:viewportCount must: be identical **** include::../validity/structs/VkPipelineViewportStateCreateInfo.txt[] ifndef::VK_NV_viewport_array2[] If a geometry shader is active and has an output variable decorated with code:ViewportIndex, the viewport transformation uses the viewport corresponding to the value assigned to code:ViewportIndex taken from an implementation-dependent vertex of each primitive. If code:ViewportIndex is outside the range zero to pname:viewportCount minus one for a primitive, or if the geometry shader did not assign a value to code:ViewportIndex for all vertices of a primitive due to flow control, the results of the viewport transformation of the vertices of such primitives are undefined. If no geometry shader is active, or if the geometry shader does not have an output decorated with code:ViewportIndex, the viewport numbered zero is used by the viewport transformation. endif::VK_NV_viewport_array2[] ifdef::VK_NV_viewport_array2[] A _vertex processing stage_ may direct each primitive to zero or more viewports. The destination viewports for a primitive are selected by the last active vertex processing stage that has an output variable decorated with code:ViewportIndex (selecting a single viewport) or code:ViewportMaskNV (selecting multiple viewports). The viewport transform uses the viewport corresponding to either the value assigned to code:ViewportIndex or one of the bits set in code:ViewportMaskNV, and taken from an implementation-dependent vertex of each primitive. If code:ViewportIndex or any of the bits in code:ViewportMaskNV are outside the range zero to pname:viewportCount minus one for a primitive, or if the last active vertex processing stage did not assign a value to either code:ViewportIndex or code:ViewportMaskNV for all vertices of a primitive due to flow control, the results of the viewport transformation of the vertices of such primitives are undefined. If the last vertex processing stage does not have an output decorated with code:ViewportIndex or code:ViewportMask, the viewport numbered zero is used by the viewport transformation. endif::VK_NV_viewport_array2[] A single vertex can: be used in more than one individual primitive, in primitives such as ename:VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP. In this case, the viewport transformation is applied separately for each primitive. // refBegin vkCmdSetViewport Set the viewport on a command buffer If the bound pipeline state object was not created with the ename:VK_DYNAMIC_STATE_VIEWPORT dynamic state enabled, viewport transformation parameters are specified using the pname:pViewports member of sname:VkPipelineViewportStateCreateInfo in the pipeline state object. If the pipeline state object was created with the ename:VK_DYNAMIC_STATE_VIEWPORT dynamic state enabled, the viewport transformation parameters are dynamically set and changed with the command: include::../api/protos/vkCmdSetViewport.txt[] * pname:commandBuffer is the command buffer into which the command will be recorded. * pname:firstViewport is the index of the first viewport whose parameters are updated by the command. * pname:viewportCount is the number of viewports whose parameters are updated by the command. * pname:pViewports is a pointer to an array of slink:VkViewport structures specifying viewport parameters. The viewport parameters taken from element [eq]#i# of pname:pViewports replace the current state for the viewport index [eq]#pname:firstViewport {plus} i#, for [eq]#i# in [eq]#[0, pname:viewportCount)#. .Valid Usage **** * The currently bound graphics pipeline must: have been created with the ename:VK_DYNAMIC_STATE_VIEWPORT dynamic state enabled * pname:firstViewport must: be less than sname:VkPhysicalDeviceLimits::pname:maxViewports * The sum of pname:firstViewport and pname:viewportCount must: be between `1` and sname:VkPhysicalDeviceLimits::pname:maxViewports, inclusive * If the <> feature is not enabled, pname:firstViewport must: be `0` * If the <> feature is not enabled, pname:viewportCount must: be `1` * pname:pViewports must: be a pointer to an array of pname:viewportCount valid sname:VkViewport structures **** include::../validity/protos/vkCmdSetViewport.txt[] Both slink:VkPipelineViewportStateCreateInfo and flink:vkCmdSetViewport use sname:VkViewport to set the viewport transformation parameters. // refBegin VkViewport Structure specifying a viewport The sname:VkViewport structure is defined as: include::../api/structs/VkViewport.txt[] * pname:x and pname:y are the viewport's upper left corner [eq]#(x,y)#. * pname:width and pname:height are the viewport's width and height, respectively. * pname:minDepth and pname:maxDepth are the depth range for the viewport. It is valid for pname:minDepth to be greater than or equal to pname:maxDepth. The framebuffer depth coordinate [eq]#pname:z~f~# may: be represented using either a fixed-point or floating-point representation. However, a floating-point representation must: be used if the depth/stencil attachment has a floating-point depth component. If an [eq]#m#-bit fixed-point representation is used, we assume that it represents each value latexmath:[\frac{k}{2^m - 1}], where [eq]#k {elem} { 0, 1, ..., 2^m^-1 }#, as [eq]#k# (e.g. 1.0 is represented in binary as a string of all ones). The viewport parameters shown in the above equations are found from these values as :: [eq]#o~x~ = pname:x + pname:width / 2# :: [eq]#o~y~ = pname:y + pname:height / 2# :: [eq]#o~z~ = pname:minDepth# :: [eq]#p~x~ = pname:width# :: [eq]#p~y~ = pname:height# :: [eq]#p~z~ = pname:maxDepth - pname:minDepth#. ifdef::VK_KHR_maintenance1[] The application can: specify a negative term for pname:height, which has the effect of negating the y coordinate in clip space before performing the transform. When using a negative pname:height, the application should: also adjust the pname:y value to point to the lower left corner of the viewport instead of the upper left corner. Using the negative pname:height allows the application to avoid having to negate the y component of the code:Position output from the last vertex processing stage in shaders that also target other graphics APIs. endif::VK_KHR_maintenance1[] The width and height of the <> must: be greater than or equal to the width and height of the largest image which can: be created and attached to a framebuffer. The floating-point viewport bounds are represented with an <>. .Valid Usage **** * pname:width must: be greater than `0.0` and less than or equal to sname:VkPhysicalDeviceLimits::pname:maxViewportDimensions[0] ifndef::VK_KHR_maintenance1[] * pname:height must: be greater than `0.0` and less than or equal to sname:VkPhysicalDeviceLimits::pname:maxViewportDimensions[1] endif::VK_KHR_maintenance1[] ifdef::VK_KHR_maintenance1[] * pname:height must: be greater than or equal to -sname:VkPhysicalDeviceLimits::pname:maxViewportDimensions[1] and less than or equal to sname:VkPhysicalDeviceLimits::pname:maxViewportDimensions[1] endif::VK_KHR_maintenance1[] ifdef::VK_AMD_negative_viewport_height[] * If the VK_AMD_negative_viewport_height extension is enabled, pname:height can: also be negative. endif::VK_AMD_negative_viewport_height[] * pname:x and pname:y must: each be between pname:viewportBoundsRange[0] and pname:viewportBoundsRange[1], inclusive * pname:x + pname:width must: be less than or equal to pname:viewportBoundsRange[1] * pname:y + pname:height must: be less than or equal to pname:viewportBoundsRange[1] * pname:minDepth must: be between `0.0` and `1.0`, inclusive * pname:maxDepth must: be between `0.0` and `1.0`, inclusive **** include::../validity/structs/VkViewport.txt[]