// Copyright (c) 2014-2017 The Khronos Group Inc. // Copyright notice at https://www.khronos.org/registry/speccopyright.html [[wsi]] = Window System Integration (WSI) This chapter discusses the window system integration (WSI) between the Vulkan API and the various forms of displaying the results of rendering to a user. Since the Vulkan API can: be used without displaying results, WSI is provided through the use of optional Vulkan extensions. This chapter provides an overview of WSI. See the appendix for additional details of each WSI extension, including which extensions must: be enabled in order to use each of the functions described in this chapter. == WSI Platform A platform is an abstraction for a window system, OS, etc. Some examples include MS Windows, Android, and Wayland. The Vulkan API may: be integrated in a unique manner for each platform. The Vulkan API does not define any type of platform object. Platform-specific WSI extensions are defined, which contain platform-specific functions for using WSI. Use of these extensions is guarded by preprocessor symbols as defined in the <> appendix. In order for an application to be compiled to use WSI with a given platform, it must: #define the appropriate preprocessor symbol prior to including the "vulkan.h" header file. Each platform-specific extension is an instance extension. The application must: enable instance extensions with fname:vkCreateInstance before using them. == WSI Surface // refBegin VkSurfaceKHR - Opaque handle to a surface object Native platform surface or window objects are abstracted by surface objects, which are represented by sname:VkSurfaceKHR handles: include::../../api/handles/VkSurfaceKHR.txt[] The +VK_KHR_surface+ extension declares the sname:VkSurfaceKHR object, and provides a function for destroying sname:VkSurfaceKHR objects. Separate platform-specific extensions each provide a function for creating a sname:VkSurfaceKHR object for the respective platform. From the application's perspective this is an opaque handle, just like the handles of other Vulkan objects. ifdef::implementation-guide[] [NOTE] .Note ==== On certain platforms, the Vulkan loader and ICDs may: have conventions that treat the handle as a pointer to a struct that contains the platform-specific information about the surface. This will be described in the documentation for the loader-ICD interface, and in the "vk_icd.h" header file of the LoaderAndTools source-code repository. This does not affect the loader-layer interface; layers may: wrap sname:VkSurfaceKHR objects. ==== // refEnd VkSurfaceKHR ifdef::editing-notes[] [NOTE] .editing-note ==== TODO: Consider replacing the above note editing note with a pointer to the loader spec when it exists. However, the information is not relevant to users of the API nor does it affect conformance of a Vulkan implementation to this spec. ==== endif::editing-notes[] endif::implementation-guide[] ifdef::VK_KHR_android_surface[] include::../VK_KHR_android_surface/platformCreateSurface_android.txt[] endif::VK_KHR_android_surface[] ifdef::VK_KHR_mir_surface[] include::../VK_KHR_mir_surface/platformCreateSurface_mir.txt[] endif::VK_KHR_mir_surface[] ifdef::VK_KHR_wayland_surface[] include::../VK_KHR_wayland_surface/platformCreateSurface_wayland.txt[] endif::VK_KHR_wayland_surface[] ifdef::VK_KHR_win32_surface[] include::../VK_KHR_win32_surface/platformCreateSurface_win32.txt[] endif::VK_KHR_win32_surface[] ifdef::VK_KHR_xcb_surface[] include::../VK_KHR_xcb_surface/platformCreateSurface_xcb.txt[] endif::VK_KHR_xcb_surface[] ifdef::VK_KHR_xlib_surface[] include::../VK_KHR_xlib_surface/platformCreateSurface_xlib.txt[] endif::VK_KHR_xlib_surface[] ifdef::VK_MVK_ios_surface[] include::../VK_MVK_ios_surface/platformCreateSurface_ios.txt[] endif::VK_MVK_ios_surface[] ifdef::VK_MVK_macos_surface[] include::../VK_MVK_macos_surface/platformCreateSurface_macos.txt[] endif::VK_MVK_macos_surface[] ifdef::VK_NN_vi_surface[] include::../VK_NN_vi_surface/platformCreateSurface_vi.txt[] endif::VK_NN_vi_surface[] === Platform-Independent Information Once created, sname:VkSurfaceKHR objects can: be used in this and other extensions, in particular the +VK_KHR_swapchain+ extension. Several WSI functions return ename:VK_ERROR_SURFACE_LOST_KHR if the surface becomes no longer available. After such an error, the surface (and any child swapchain, if one exists) should: be destroyed, as there is no way to restore them to a not-lost state. Applications may: attempt to create a new sname:VkSurfaceKHR using the same native platform window object, but whether such re-creation will succeed is platform-dependent and may: depend on the reason the surface became unavailable. A lost surface does not otherwise cause devices to be <>. // refBegin vkDestroySurfaceKHR - Destroy a VkSurfaceKHR object To destroy a sname:VkSurfaceKHR object, call: include::../../api/protos/vkDestroySurfaceKHR.txt[] * pname:instance is the instance used to create the surface. * pname:surface is the surface to destroy. * pname:pAllocator is the allocator used for host memory allocated for the surface object when there is no more specific allocator available (see <>). Destroying a sname:VkSurfaceKHR merely severs the connection between Vulkan and the native surface, and does not imply destroying the native surface, closing a window, or similar behavior. .Valid Usage **** * All sname:VkSwapchainKHR objects created for pname:surface must: have been destroyed prior to destroying pname:surface * If sname:VkAllocationCallbacks were provided when pname:surface was created, a compatible set of callbacks must: be provided here * If no sname:VkAllocationCallbacks were provided when pname:surface was created, pname:pAllocator must: be `NULL` **** include::../../validity/protos/vkDestroySurfaceKHR.txt[] ifdef::VK_KHR_display[] include::../VK_KHR_display/display.txt[] endif::VK_KHR_display[] == Querying for WSI Support Not all physical devices will include WSI support. Within a physical device, not all queue families will support presentation. WSI support and compatibility can: be determined in a platform-neutral manner (which determines support for presentation to a particular surface object) and additionally may: be determined in platform-specific manners (which determine support for presentation on the specified physical device but do not guarantee support for presentation to a particular surface object). // refBegin vkGetPhysicalDeviceSurfaceSupportKHR - Query if presentation is supported To determine whether a queue family of a physical device supports presentation to a given surface, call: include::../../api/protos/vkGetPhysicalDeviceSurfaceSupportKHR.txt[] * pname:physicalDevice is the physical device. * pname:queueFamilyIndex is the queue family. * pname:surface is the surface. * pname:pSupported is a pointer to a basetype:VkBool32, which is set to ename:VK_TRUE to indicate support, and ename:VK_FALSE otherwise. .Valid Usage **** * pname:queueFamilyIndex must: be less than pname:pQueueFamilyPropertyCount returned by fname:vkGetPhysicalDeviceQueueFamilyProperties for the given pname:physicalDevice **** include::../../validity/protos/vkGetPhysicalDeviceSurfaceSupportKHR.txt[] ifdef::VK_KHR_android_surface[] include::../VK_KHR_android_surface/platformQuerySupport_android.txt[] endif::VK_KHR_android_surface[] ifdef::VK_KHR_mir_surface[] include::../VK_KHR_mir_surface/platformQuerySupport_mir.txt[] endif::VK_KHR_mir_surface[] ifdef::VK_KHR_wayland_surface[] include::../VK_KHR_wayland_surface/platformQuerySupport_wayland.txt[] endif::VK_KHR_wayland_surface[] ifdef::VK_KHR_win32_surface[] include::../VK_KHR_win32_surface/platformQuerySupport_win32.txt[] endif::VK_KHR_win32_surface[] ifdef::VK_KHR_xcb_surface[] include::../VK_KHR_xcb_surface/platformQuerySupport_xcb.txt[] endif::VK_KHR_xcb_surface[] ifdef::VK_KHR_xlib_surface[] include::../VK_KHR_xlib_surface/platformQuerySupport_xlib.txt[] endif::VK_KHR_xlib_surface[] ifdef::VK_MVK_ios_surface[] include::../VK_MVK_ios_surface/platformQuerySupport_ios.txt[] endif::VK_MVK_ios_surface[] ifdef::VK_MVK_macos_surface[] include::../VK_MVK_macos_surface/platformQuerySupport_macos.txt[] endif::VK_MVK_macos_surface[] ifdef::VK_NN_vi_surface[] include::../VK_NN_vi_surface/platformQuerySupport_vi.txt[] endif::VK_NN_vi_surface[] == Surface Queries // refBegin vkGetPhysicalDeviceSurfaceCapabilitiesKHR - Query surface capabilities To query the basic capabilities of a surface, needed in order to create a swapchain, call: include::../../api/protos/vkGetPhysicalDeviceSurfaceCapabilitiesKHR.txt[] * pname:physicalDevice is the physical device that will be associated with the swapchain to be created, as described for flink:vkCreateSwapchainKHR. * pname:surface is the surface that will be associated with the swapchain. * pname:pSurfaceCapabilities is a pointer to an instance of the slink:VkSurfaceCapabilitiesKHR structure in which the capabilities are returned. include::../../validity/protos/vkGetPhysicalDeviceSurfaceCapabilitiesKHR.txt[] // refBegin VkSurfaceCapabilitiesKHR - Structure describing capabilities of a surface The sname:VkSurfaceCapabilitiesKHR structure is defined as: include::../../api/structs/VkSurfaceCapabilitiesKHR.txt[] * pname:minImageCount is the minimum number of images the specified device supports for a swapchain created for the surface, and will be at least one. * pname:maxImageCount is the maximum number of images the specified device supports for a swapchain created for the surface, and will be either 0, or greater than or equal to pname:minImageCount. A value of 0 means that there is no limit on the number of images, though there may: be limits related to the total amount of memory used by presentable images. * pname:currentExtent is the current width and height of the surface, or the special value [eq]#(0xFFFFFFFF, 0xFFFFFFFF)# indicating that the surface size will be determined by the extent of a swapchain targeting the surface. * pname:minImageExtent contains the smallest valid swapchain extent for the surface on the specified device. The pname:width and pname:height of the extent will each be less than or equal to the corresponding pname:width and pname:height of pname:currentExtent, unless pname:currentExtent has the special value described above. * pname:maxImageExtent contains the largest valid swapchain extent for the surface on the specified device. The pname:width and pname:height of the extent will each be greater than or equal to the corresponding pname:width and pname:height of pname:minImageExtent. The pname:width and pname:height of the extent will each be greater than or equal to the corresponding pname:width and pname:height of pname:currentExtent, unless pname:currentExtent has the special value described above. * pname:maxImageArrayLayers is the maximum number of layers presentable images can: have for a swapchain created for this device and surface, and will be at least one. * pname:supportedTransforms is a bitmask of elink:VkSurfaceTransformFlagBitsKHR, describing the presentation transforms supported for the surface on the specified device, and at least one bit will be set. * pname:currentTransform is the surface's current transform relative to the presentation engine's natural orientation, as described by elink:VkSurfaceTransformFlagBitsKHR. * pname:supportedCompositeAlpha is a bitmask of elink:VkCompositeAlphaFlagBitsKHR, representing the alpha compositing modes supported by the presentation engine for the surface on the specified device, and at least one bit will be set. Opaque composition can: be achieved in any alpha compositing mode by either using an image format that has no alpha component, or by ensuring that all pixels in the presentable images have an alpha value of 1.0. * pname:supportedUsageFlags is a bitmask of elink:VkImageUsageFlagBits representing the ways the application can: use the presentable images of a swapchain created for the surface on the specified device. ename:VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT must: be included in the set but implementations may: support additional usages. [NOTE] .Note ==== Formulas such as [eq]#min(N, pname:maxImageCount)# are not correct, since pname:maxImageCount may: be zero. ==== include::../../validity/structs/VkSurfaceCapabilitiesKHR.txt[] ifdef::VK_EXT_display_surface_counter[] include::../VK_EXT_display_surface_counter/surface_capabilities.txt[] endif::VK_EXT_display_surface_counter[] // refBegin VkSurfaceTransformFlagBitsKHR - presentation transforms supported on a device slink:VkSurfaceCapabilitiesKHR::pname:supportedTransforms is a bitmask of, and slink:VkSurfaceCapabilitiesKHR::pname:currentTransform is a single bit from ename:VkSurfaceTransformFlagBitsKHR, which contains the following values: include::../../api/enums/VkSurfaceTransformFlagBitsKHR.txt[] These values are described as follows: * ename:VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: The image content is presented without being transformed. * ename:VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: The image content is rotated 90 degrees clockwise. * ename:VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: The image content is rotated 180 degrees clockwise. * ename:VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: The image content is rotated 270 degrees clockwise. * ename:VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: The image content is mirrored horizontally. * ename:VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: The image content is mirrored horizontally, then rotated 90 degrees clockwise. * ename:VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: The image content is mirrored horizontally, then rotated 180 degrees clockwise. * ename:VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: The image content is mirrored horizontally, then rotated 270 degrees clockwise. * ename:VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR: The presentation transform is not specified, and is instead determined by platform-specific considerations and mechanisms outside Vulkan. // refEnd VkSurfaceTransformFlagBitsKHR // refBegin VkCompositeAlphaFlagBitsKHR - alpha compositing modes supported on a device The pname:supportedCompositeAlpha member is of type ename:VkCompositeAlphaFlagBitsKHR, which contains the following values: include::../../api/enums/VkCompositeAlphaFlagBitsKHR.txt[] These values are described as follows: * ename:VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR: The alpha channel, if it exists, of the images is ignored in the compositing process. Instead, the image is treated as if it has a constant alpha of 1.0. * ename:VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR: The alpha channel, if it exists, of the images is respected in the compositing process. The non-alpha channels of the image are expected to already be multiplied by the alpha channel by the application. * ename:VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR: The alpha channel, if it exists, of the images is respected in the compositing process. The non-alpha channels of the image are not expected to already be multiplied by the alpha channel by the application; instead, the compositor will multiply the non-alpha channels of the image by the alpha channel during compositing. * ename:VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR: The way in which the presentation engine treats the alpha channel in the images is unknown to the Vulkan API. Instead, the application is responsible for setting the composite alpha blending mode using native window system commands. If the application does not set the blending mode using native window system commands, then a platform-specific default will be used. // refEnd VkCompositeAlphaFlagBitsKHR // refBegin vkGetPhysicalDeviceSurfaceFormatsKHR - Query color formats supported by surface To query the supported swapchain format-color space pairs for a surface, call: include::../../api/protos/vkGetPhysicalDeviceSurfaceFormatsKHR.txt[] * pname:physicalDevice is the physical device that will be associated with the swapchain to be created, as described for flink:vkCreateSwapchainKHR. * pname:surface is the surface that will be associated with the swapchain. * pname:pSurfaceFormatCount is a pointer to an integer related to the number of format pairs available or queried, as described below. * pname:pSurfaceFormats is either `NULL` or a pointer to an array of sname:VkSurfaceFormatKHR structures. If pname:pSurfaceFormats is `NULL`, then the number of format pairs supported for the given pname:surface is returned in pname:pSurfaceFormatCount. The number of format pairs supported will be greater than or equal to 1. Otherwise, pname:pSurfaceFormatCount must: point to a variable set by the user to the number of elements in the pname:pSurfaceFormats array, and on return the variable is overwritten with the number of structures actually written to pname:pSurfaceFormats. If the value of pname:pSurfaceFormatCount is less than the number of format pairs supported, at most pname:pSurfaceFormatCount structures will be written. If pname:pSurfaceFormatCount is smaller than the number of format pairs supported for the given pname:surface, ename:VK_INCOMPLETE will be returned instead of ename:VK_SUCCESS to indicate that not all the available values were returned. include::../../validity/protos/vkGetPhysicalDeviceSurfaceFormatsKHR.txt[] // refBegin VkSurfaceFormatKHR - Structure describing a supported swapchain format-color space pair The sname:VkSurfaceFormatKHR structure is defined as: include::../../api/structs/VkSurfaceFormatKHR.txt[] * pname:format is a ename:VkFormat that is compatible with the specified surface. * pname:colorSpace is a presentation ename:VkColorSpaceKHR that is compatible with the surface. include::../../validity/structs/VkSurfaceFormatKHR.txt[] While the pname:format of a presentable image refers to the encoding of each pixel, the pname:colorSpace determines how the presentation engine interprets the pixel values. A color space in this document refers to a specific color space (defined by the chromaticities of its primaries and a white point in CIE Lab), and a transfer function that is applied before storing or transmitting color data in the given color space. // refBegin VkColorSpaceKHR - supported color space of the presentation engine The ename:VkColorSpaceKHR is defined as follows: include::../../api/enums/VkColorSpaceKHR.txt[] ifndef::VK_EXT_swapchain_colorspace[] * ename:VK_COLOR_SPACE_SRGB_NONLINEAR_KHR: The presentation engine supports the sRGB color space. endif::VK_EXT_swapchain_colorspace[] ifdef::VK_EXT_swapchain_colorspace[] * ename:VK_COLOR_SPACE_SRGB_NONLINEAR_KHR: The presentation engine supports the sRGB color space. * ename:VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT - supports the Display-P3 color space and applies an sRGB-like OETF (defined below). * ename:VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT - supports the extended sRGB color space and applies a linear OETF. * ename:VK_COLOR_SPACE_DCI_P3_LINEAR_EXT - supports the DCI-P3 color space and applies a linear OETF. * ename:VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT - supports the DCI-P3 color space and applies the Gamma 2.6 OETF. * ename:VK_COLOR_SPACE_BT709_LINEAR_EXT - supports the BT709 color space and applies a linear OETF. * ename:VK_COLOR_SPACE_BT709_NONLINEAR_EXT - supports the BT709 color space and applies the SMPTE 170M OETF. * ename:VK_COLOR_SPACE_BT2020_LINEAR_EXT - supports the BT2020 color space and applies a linear OETF. * ename:VK_COLOR_SPACE_HDR10_ST2084_EXT - supports HDR10 (BT2020 color) space and applies the SMPTE ST2084 Perceptual Quantizer (PQ) OETF. * ename:VK_COLOR_SPACE_DOLBYVISION_EXT - supports Dolby Vision (BT2020 color space), proprietary encoding, and applies the SMPTE ST2084 OETF. * ename:VK_COLOR_SPACE_HDR10_HLG_EXT - supports HDR10 (BT2020 color space) and applies the Hybrid Log Gamma (HLG) OETF. * ename:VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT - supports the AdobeRGB color space and applies a linear OETF. * ename:VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT - supports the AdobeRGB color space and applies the Gamma 2.2 OETF. * ename:VK_COLOR_SPACE_PASS_THROUGH_EXT - color components used "as is". Intended to allow application to supply data for color spaces not described here. The color components of Non-linear color space swap chain images have had the appropriate transfer function applied. Vulkan requires that all implementations support the sRGB OETF and EOTF transfer functions when using an SRGB pixel format. Other transfer functions, such as SMPTE 170M or SMPTE2084, must: not be performed by the implementation, but can: be performed by the application shader. This extension defines enums for elink:VkColorSpaceKHR that correspond to the following color spaces:: [[VK_EXT_swapchain_colorspace-table]] .Color Spaces and Attributes [options="header"] |==== | Name | Red Primary | Green Primary | Blue Primary | White-point | OETF | DCI-P3 | 0.680, 0.320 | 0.265, 0.690 | 0.150, 0.060 | 0.3127, 0.3290 (D65) | Gamma 2.6 | Display-P3 | 0.680, 0.320 | 0.265, 0.690 | 0.150, 0.060 | 0.3127, 0.3290 (D65) | Display-P3 | BT709 | 0.640, 0.330 | 0.300, 0.600 | 0.150, 0.060 | 0.3127, 0.3290 (D65) | SMPTE 170M | sRGB | 0.640, 0.330 | 0.300, 0.600 | 0.150, 0.060 | 0.3127, 0.3290 (D65) | sRGB | extended sRGB | 0.640, 0.330 | 0.300, 0.600 | 0.150, 0.060 | 0.3127, 0.3290 (D65) | extended sRGB | HDR10_ST2084 | 0.708, 0.292 | 0.170, 0.797 | 0.131, 0.046 | 0.3127, 0.3290 (D65) | ST2084 | DOLBYVISION | 0.708, 0.292 | 0.170, 0.797 | 0.131, 0.046 | 0.3127, 0.3290 (D65) | ST2084 | HDR10_HLG | 0.708, 0.292 | 0.170, 0.797 | 0.131, 0.046 | 0.3127, 0.3290 (D65) | HLG | AdobeRGB | 0.640, 0.330 | 0.210, 0.710 | 0.150, 0.060 | 0.3127, 0.3290 (D65) | AdobeRGB |==== For Opto-Electrical Transfer Function (OETF), unless otherwise specified, the values of [eq]#L# and [eq]#E# are defined as: [eq]#L# - linear luminance of image latexmath:[0 \leq L \leq 1] for conventional colorimetry [eq]#E# - corresponding electrical signal (value stored in memory) === sRGB OETF [latexmath] +++++++++++++++++++ \begin{aligned} E & = \begin{cases} 1.055 \times L^{1 \over 2.4} - 0.055 & \text{for}\ 0.0031308 \leq L \leq 1 \\ 12.92 \times L & \text{for}\ 0 \leq L < 0.0031308 \end{cases} \end{aligned} +++++++++++++++++++ === Display-P3 EOTF [latexmath] +++++++++++++++++++ \begin{aligned} E & = \begin{cases} (a \times L + b)^{2.4} & \text{for}\ 0.039 \leq L \leq 1 \\ b \times L & \text{for}\ 0 \leq L < 0.039 \end{cases} \end{aligned} +++++++++++++++++++ latexmath:[a = 0.948] + latexmath:[b = 0.052] + latexmath:[c = 0.077] + === Display-P3 OETF [latexmath] +++++++++++++++++++ \begin{aligned} E & = \begin{cases} 1.055 \times L^{1 \over 2.4} - 0.055 & \text{for}\ 0.0030186 \leq L \leq 1 \\ 12.92 \times L & \text{for}\ 0 \leq L < 0.0030186 \end{cases} \end{aligned} +++++++++++++++++++ [NOTE] .Note ==== For most uses, the sRGB OETF is equivalent. ==== === Extended sRGB OETF [latexmath] +++++++++++++++++++ \begin{aligned} E & = \begin{cases} 1.055 \times L^{1 \over 2.4} - 0.055 & \text{for}\ 0.0031308 \leq L \leq 7.5913 \\ 12.92 \times L & \text{for}\ 0 \leq L < 0.0031308 \\ -f(-L) & \text{for}\ L < 0 \end{cases} \end{aligned} +++++++++++++++++++ [eq]#L# - luminance of image is within [eq]#[-0.6038, 7.5913]#. [eq]#E# can be negative and/or > 1. That is how extended sRGB specifies colors outside the standard sRGB gamut. This means extended sRGB needs a floating point pixel format to cover the intended color range. === SMPTE 170M OETF [latexmath] +++++++++++++++++++ \begin{aligned} E & = \begin{cases} \alpha \times L^{0.45} - (1 - \alpha) & \text{for}\ \beta \leq L \leq 1 \\ 4.5 \times L & \text{for}\ 0 \leq L < \beta \end{cases} \end{aligned} +++++++++++++++++++ latexmath:[\alpha = 1.099 \text{ and } \beta = 0.018 \text{ for 10-bits and less per sample system (the values given in Rec. 709)}] + latexmath:[\alpha = 1.0993 \text{ and } \beta = 0.0181 \text{ for 12-bits per sample system}] === SMPTE ST2084 OETF (Inverse-EOTF) [latexmath] +++++++++++++++++++ \[ E = (\frac{c_1 + c_2 \times L^{m_1}}{1 + c_3 \times L^{m_1}})^{m_2} \] +++++++++++++++++++ where: latexmath:[m_1 = 2610 / 4096 \times \frac{1}{4} = 0.1593017578125] + latexmath:[m_2 = 2523 / 4096 \times 128 = 78.84375] + latexmath:[c_1 = 3424 / 4096 = 0.8359375 = c3 - c2 + 1] + latexmath:[c_2 = 2413 / 4096 \times 32 = 18.8515625] + latexmath:[c_3 = 2392 / 4096 \times 32 = 18.6875] + === Hybrid Log Gamma (HLG) [latexmath] +++++++++++++++++++ \begin{aligned} E & = \begin{cases} r \sqrt{L} & \text{for}\ 0 \leq L \leq 1 \\ a \times \ln(L - b) + c & \text{for}\ 1 < L \end{cases} \end{aligned} +++++++++++++++++++ latexmath:[L \text{ - is the signal normalized by the reference white level}] + latexmath:[r \text{ - is the reference white level and has a signal value of 0.5}] + latexmath:[a = 0.17883277 \text{ and } b = 0.28466892 \text{, and } c = 0.55991073] === AdobeRGB OETF latexmath:[E = L^\frac{1}{2.19921875}] === Gamma 2.6 OETF latexmath:[E = L^\frac{1}{2.6}] An implementation supporting this extension indicates support for these color spaces via slink:VkSurfaceFormatKHR structures returned from flink:vkGetPhysicalDeviceSurfaceFormatsKHR. Specifying the supported surface color space when calling flink:vkCreateSwapchainKHR will create a swapchain using that color space. Vulkan requires that all implementations support the sRGB Opto-Electrical Transfer Function (OETF) and Electro-optical transfer function (EOTF) when using an SRGB pixel format. Other transfer functions, such as SMPTE 170M, must: not be performed by the implementation, but can: be performed by the application shader. endif::VK_EXT_swapchain_colorspace[] If pname:pSurfaceFormats includes an entry whose value for pname:colorSpace is ename:VK_COLOR_SPACE_SRGB_NONLINEAR_KHR and whose value for pname:format is a UNORM (or SRGB) format and the corresponding SRGB (or UNORM) format is a color renderable format for ename:VK_IMAGE_TILING_OPTIMAL, then pname:pSurfaceFormats must: also contain an entry with the same value for pname:colorSpace and pname:format equal to the corresponding SRGB (or UNORM) format. [NOTE] .Note ==== If pname:pSurfaceFormats includes just one entry, whose value for pname:format is ename:VK_FORMAT_UNDEFINED, pname:surface has no preferred format. In this case, the application can: use any valid ename:VkFormat value. ==== [NOTE] .Note ==== In the initial release of the +VK_KHR_surface+ and +VK_KHR_swapchain+ extensions, the token ename:VK_COLORSPACE_SRGB_NONLINEAR_KHR was used. Starting in the May 13, 2016 updates to the extension branches, matching release 1.0.13 of the core API specification, ename:VK_COLOR_SPACE_SRGB_NONLINEAR_KHR is used instead for consistency with Vulkan naming rules. The older enum is still available for backwards compatibility. ==== // refEnd VkColorSpaceKHR // refBegin vkGetPhysicalDeviceSurfacePresentModesKHR - Query supported presentation modes To query the supported presentation modes for a surface, call: include::../../api/protos/vkGetPhysicalDeviceSurfacePresentModesKHR.txt[] * pname:physicalDevice is the physical device that will be associated with the swapchain to be created, as described for flink:vkCreateSwapchainKHR. * pname:surface is the surface that will be associated with the swapchain. * pname:pPresentModeCount is a pointer to an integer related to the number of presentation modes available or queried, as described below. * pname:pPresentModes is either `NULL` or a pointer to an array of elink:VkPresentModeKHR values. If pname:pPresentModes is `NULL`, then the number of presentation modes supported for the given pname:surface is returned in pname:pPresentModeCount. Otherwise, pname:pPresentModeCount must: point to a variable set by the user to the number of elements in the pname:pPresentModes array, and on return the variable is overwritten with the number of values actually written to pname:pPresentModes. If the value of pname:pPresentModeCount is less than the number of presentation modes supported, at most pname:pPresentModeCount values will be written. If pname:pPresentModeCount is smaller than the number of presentation modes supported for the given pname:surface, ename:VK_INCOMPLETE will be returned instead of ename:VK_SUCCESS to indicate that not all the available values were returned. include::../../validity/protos/vkGetPhysicalDeviceSurfacePresentModesKHR.txt[] // refBegin VkPresentModeKHR - presentation mode supported for a surface The definition of ename:VkPresentModeKHR is: include::../../api/enums/VkPresentModeKHR.txt[] * ename:VK_PRESENT_MODE_IMMEDIATE_KHR: The presentation engine does not wait for a vertical blanking period to update the current image, meaning this mode may: result in visible tearing. No internal queuing of presentation requests is needed, as the requests are applied immediately. * ename:VK_PRESENT_MODE_MAILBOX_KHR: The presentation engine waits for the next vertical blanking period to update the current image. Tearing cannot: be observed. An internal single-entry queue is used to hold pending presentation requests. If the queue is full when a new presentation request is received, the new request replaces the existing entry, and any images associated with the prior entry become available for re-use by the application. One request is removed from the queue and processed during each vertical blanking period in which the queue is non-empty. * ename:VK_PRESENT_MODE_FIFO_KHR: The presentation engine waits for the next vertical blanking period to update the current image. Tearing cannot: be observed. An internal queue is used to hold pending presentation requests. New requests are appended to the end of the queue, and one request is removed from the beginning of the queue and processed during each vertical blanking period in which the queue is non-empty. This is the only value of pname:presentMode that is required: to be supported. * ename:VK_PRESENT_MODE_FIFO_RELAXED_KHR: The presentation engine generally waits for the next vertical blanking period to update the current image. If a vertical blanking period has already passed since the last update of the current image then the presentation engine does not wait for another vertical blanking period for the update, meaning this mode may: result in visible tearing in this case. This mode is useful for reducing visual stutter with an application that will mostly present a new image before the next vertical blanking period, but may occasionally be late, and present a new image just after the next vertical blanking period. An internal queue is used to hold pending presentation requests. New requests are appended to the end of the queue, and one request is removed from the beginning of the queue and processed during or after each vertical blanking period in which the queue is non-empty. [NOTE] .Note ==== For reference, the mode indicated by ename:VK_PRESENT_MODE_FIFO_KHR is equivalent to the behavior of {wgl|glX|egl}SwapBuffers with a swap interval of 1, while the mode indicated by ename:VK_PRESENT_MODE_FIFO_RELAXED_KHR is equivalent to the behavior of {wgl|glX}SwapBuffers with a swap interval of -1 (from the {WGL|GLX}_EXT_swap_control_tear extensions). ==== // refEnd VkPresentModeKHR ifdef::VK_KHR_swapchain[] ifdef::VK_KHX_device_group[] == Device Group Queries // refBegin vkGetDeviceGroupPresentCapabilitiesKHX Query present capabilities from other physical devices A logical device that represents multiple physical devices may: support presenting from images on more than one physical device, or combining images from multiple physical devices. To query these capabilities, call: include::../../api/protos/vkGetDeviceGroupPresentCapabilitiesKHX.txt[] * pname:device is the logical device. * pname:pDeviceGroupPresentCapabilities is a pointer to a structure of type slink:VkDeviceGroupPresentCapabilitiesKHX that is filled with the logical device's capabilities. include::../../validity/protos/vkGetDeviceGroupPresentCapabilitiesKHX.txt[] // refBegin VkDeviceGroupPresentCapabilitiesKHX Present capabilities from other physical devices The sname:VkDeviceGroupPresentCapabilitiesKHX structure is defined as: include::../../api/structs/VkDeviceGroupPresentCapabilitiesKHX.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:presentMask is an array of masks, where the mask at element [eq]#i# is non-zero if physical device [eq]#i# has a presentation engine, and where bit [eq]#j# is set in element [eq]#i# if physical device [eq]#i# can: present swapchain images from physical device [eq]#j#. If element [eq]#i# is non-zero, then bit [eq]#i# must: be set. * pname:modes is a bitmask indicating which device group presentation modes are supported. The bits returned in pname:modes are: + -- // refBegin VkDeviceGroupPresentModeFlagBitsKHX Bitmask specifying supported device group present modes include::../../api/enums/VkDeviceGroupPresentModeFlagBitsKHX.txt[] ** if pname:modes contains ename:VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHX, any physical device with a presentation engine can: present its own swapchain images. ** if pname:modes contains ename:VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHX, any physical device with a presentation engine can: present swapchain images from any physical device in its pname:presentMask. ** if pname:modes contains ename:VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHX, any physical device with a presentation engine can: present the sum of swapchain images from any physical devices in its pname:presentMask. ** if pname:modes contains ename:VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHX, multiple physical devices with a presentation engine can: each present their own swapchain images. -- pname:modes always has ename:VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHX set. The present mode flags are also used when presenting an image, in slink:VkDeviceGroupPresentInfoKHX::pname:mode. If a device group only includes a single physical device, then pname:modes must: equal ename:VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHX. include::../../validity/structs/VkDeviceGroupPresentCapabilitiesKHX.txt[] // refBegin vkGetDeviceGroupSurfacePresentModesKHX Query present capabilities for a surface Some surfaces may: not be capable of using all the device group present modes. To query the supported device group present modes for a particular surface, call: include::../../api/protos/vkGetDeviceGroupSurfacePresentModesKHX.txt[] * pname:device is the logical device. * pname:surface is the surface. * pname:pModes is a pointer to a value of type sname:VkDeviceGroupPresentModeFlagsKHX that is filled with the supported device group present modes for the surface. The modes returned by this command are not invariant, and may: change in response to the surface being moved, resized, or occluded. These modes must: be a subset of the modes returned by flink:vkGetDeviceGroupPresentCapabilitiesKHX. include::../../validity/protos/vkGetDeviceGroupSurfacePresentModesKHX.txt[] // refEnd vkGetDeviceGroupSurfacePresentModesKHX // refBegin vkGetPhysicalDevicePresentRectanglesKHX Query present rectangles for a surface on a physical device When using ename:VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHX, the application may: need to know which regions of the surface are used when presenting locally on each physical device. Presentation of swapchain images to this surface need only have valid contents in the regions returned by this command. To query a set of rectangles used in presentation on the physical device, call: include::../../api/protos/vkGetPhysicalDevicePresentRectanglesKHX.txt[] * pname:physicalDevice is the physical device. * pname:surface is the surface. * pname:pRectCount is a pointer to an integer related to the number of rectangles available or queried, as described below. * pname:pRects is either `NULL` or a pointer to an array of sname:VkRect2D structures. If pname:pRects is `NULL`, then the number of rectangles used when presenting the given pname:surface is returned in pname:pRectCount. Otherwise, pname:pRectCount must: point to a variable set by the user to the number of elements in the pname:pRects array, and on return the variable is overwritten with the number of structures actually written to pname:pRects. If the value of pname:pRectCount is less than the number of rectangles, at most pname:pRectCount structures will be written. If pname:pRectCount is smaller than the number of rectangles used for the given pname:surface, ename:VK_INCOMPLETE will be returned instead of ename:VK_SUCCESS to indicate that not all the available values were returned. The values returned by this command are not invariant, and may: change in response to the surface being moved, resized, or occluded. The rectangles returned by this command must: not overlap. include::../../validity/protos/vkGetPhysicalDevicePresentRectanglesKHX.txt[] // refEnd vkGetPhysicalDevicePresentRectanglesKHX endif::VK_KHX_device_group[] ifdef::VK_GOOGLE_display_timing[] include::../VK_GOOGLE_display_timing/queries.txt[] endif::VK_GOOGLE_display_timing[] include::../VK_KHR_swapchain/wsi.txt[] endif::VK_KHR_swapchain[]