// Copyright (c) 2015-2017 Khronos Group. This work is licensed under a // Creative Commons Attribution 4.0 International License; see // http://creativecommons.org/licenses/by/4.0/ [[synchronization]] = Synchronization and Cache Control Synchronization of access to resources is primarily the responsibility of the application in Vulkan. The order of execution of commands with respect to the host and other commands on the device has few implicit guarantees, and needs to be explicitly specified. Memory caches and other optimizations are also explicitly managed, requiring that the flow of data through the system is largely under application control. Whilst some implicit guarantees exist between commands, four explicit synchronization primitives are exposed by Vulkan: <>:: Fences can: be used to communicate to the host that execution of some task on the device has completed. <>:: Semaphores can: be used to control resource access across multiple queues. <>:: Events provide a fine-grained synchronization primitive which can: be signaled either within a command buffer or by the host, and can: be waited upon within a command buffer or queried on the host. <>:: Pipeline barriers also provide synchronization control within a command buffer, but at a single point, rather than with separate signal and wait operations. In addition to the base primitives provided here, <> provide a useful synchronization framework for most rendering tasks, built upon the concepts in this chapter. Many cases that would otherwise need an application to use synchronization primitives in this chapter can: be expressed more efficiently as part of a render pass. [[synchronization-dependencies]] == Execution and Memory Dependencies An _operation_ is an arbitrary amount of work to be executed on the host, a device, or an external entity such as a presentation engine. Synchronization commands introduce explicit _execution dependencies_, and _memory dependencies_ between two sets of operations defined by the command's two _synchronization scopes_. [[synchronization-dependencies-scopes]] The synchronization scopes define which other operations a synchronization command is able to create execution dependencies with. Any type of operation that is not in a synchronization command's synchronization scopes will not be included in the resulting dependency. For example, for many synchronization commands, the synchronization scopes can: be limited to just operations executing in specific <>, which allows other pipeline stages to be excluded from a dependency. Other scoping options are possible, depending on the particular command. [[synchronization-dependencies-execution]] An _execution dependency_ is a guarantee that for two sets of operations, the first set must: _happen-before_ the second set. If an operation happens-before another operation, then the first operation must: complete before the second operation is initiated. More precisely: * Let *A* and *B* be separate sets of operations. * Let *S* be a synchronization command. * Let *A~S~* and *B~S~* be the synchronization scopes of *S*. * Let *A'* be the intersection of sets *A* and *A~S~*. * Let *B'* be the intersection of sets *B* and *B~S~*. * Submitting *A*, *S* and *B* for execution, in that order, will result in execution dependency *E* between *A'* and *B'*. * Execution dependency *E* guarantees that *A'* happens-before *B'*. [[synchronization-dependencies-chains]] An _execution dependency chain_ is a sequence of execution dependencies that form a happens-before relation between the first dependency's *A'* and the final dependency's *B'*. For each consecutive pair of execution dependencies, a chain exists if the intersection of *B~S~* in the first dependency and *A~S~* in the second dependency is not an empty set. The formation of a single execution dependency from an execution dependency chain can be described by substituting the following in the description of execution dependencies: * Let *S* be a set of synchronization commands that generate an execution dependency chain. * Let *A~S~* be the first synchronization scope of the first command in *S*. * Let *B~S~* be the second synchronization scope of the last command in *S*. .Note [NOTE] ==== An execution dependency is inherently also multiple execution dependencies - a dependency exists between each subset of *A'* and each subset of *B'*, and the same is true for execution dependency chains. For example, a synchronization command with multiple <> in its stage masks effectively generates one dependency between each source stage and each destination stage. This can be useful to think about when considering how execution chains are formed if they do not involve all parts of a synchronization command's dependency. Similarly, any set of adjacent dependencies in an execution dependency chain can: be considered an execution dependency chain in its own right. ==== Execution dependencies alone are not sufficient to guarantee that values resulting from writes in one set of operations can: be read from another set of operations. [[synchronization-dependencies-available-and-visible]] Two additional types of operation are used to control memory access. _Availability operations_ cause the values generated by specified memory write accesses to become _available_ for future access. Any available value remains available until a subsequent write to the same memory location occurs (whether it is made available or not) or the memory is freed. _Visibility operations_ cause any available values to become _visible_ to specified memory accesses. [[synchronization-dependencies-memory]] A _memory dependency_ is an execution dependency which includes availability and visibility operations such that: * The first set of operations happens-before the availability operation. * The availability operation happens-before the visibility operation. * The visibility operation happens-before the second set of operations. Once written values are made visible to a particular type of memory access, they can: be read or written by that type of memory access. Most synchronization commands in Vulkan define a memory dependency. [[synchronization-dependencies-access-scopes]] The specific memory accesses that are made available and visible are defined by the _access scopes_ of a memory dependency. Any type of access that is in a memory dependency's first access scope and occurs in *A'* is made available. Any type of access that is in a memory dependency's second access scope and occurs in *B'* has any available writes made visible to it. Any type of operation that is not in a synchronization command's access scopes will not be included in the resulting dependency. A memory dependency enforces availability and visibility of memory accesses and execution order between two sets of operations. Adding to the description of <>: * Let *a* be the set of memory accesses performed by *A'*. * Let *b* be the set of memory accesses performed by *B'*. * Let *a~S~* be the first access scope of the first command in *S*. * Let *b~S~* be the second access scope of the last command in *S*. * Let *a'* be the intersection of sets *a* and *a~S~*. * Let *b'* be the intersection of sets *b* and *b~S~*. * Submitting *A*, *S* and *B* for execution, in that order, will result in a memory dependency *m* between *A'* and *B'*. * Memory dependency *m* guarantees that: ** Memory writes in *a'* are made available. ** Available memory writes, including those from *a'*, are made visible to *b'*. [NOTE] .Note ==== Execution and memory dependencies are used to solve data hazards, i.e. to ensure that read and write operations occur in a well-defined order. Write-after-read hazards can be solved with just an execution dependency, but read-after-write and write-after-write hazards need appropriate memory dependencies to be included between them. If an application does not include dependencies to solve these hazards, the results and execution orders of memory accesses are undefined. ==== [[synchronization-image-layout-transitions]] === Image Layout Transitions Image subresources can: be transitioned from one <> to another as part of a <> (e.g. by using an <>). When a layout transition is specified in a memory dependency, it happens-after the availability operations in the memory dependency, and happens-before the visibility operations. Image layout transitions may: perform read and write accesses on all memory bound to the image subresource range, so applications must: ensure that all memory writes have been made <> before a layout transition is executed. Available memory is automatically made visible to a layout transition, and writes performed by a layout transition are automatically made available. Layout transitions always apply to a particular image subresource range, and specify both an old layout and new layout. If the old layout does not match the new layout, a transition occurs. The old layout must: match the current layout of the image subresource range, with one exception. The old layout can: always be specified as ename:VK_IMAGE_LAYOUT_UNDEFINED, though doing so invalidates the contents of the image subresource range. .Note [NOTE] ==== Setting the old layout to ename:VK_IMAGE_LAYOUT_UNDEFINED implies that the contents of the image subresource need not be preserved. Implementations may: use this information to avoid performing expensive data transition operations. ==== .Note [NOTE] ==== Applications must: ensure that layout transitions happen-after all operations accessing the image with the old layout, and happen-before any operations that will access the image with the new layout. Layout transitions are potentially read/write operations, so not defining appropriate memory dependencies to guarantee this will result in a data race. ==== The contents of any portion of another resource which aliases memory that is bound to the transitioned image subresource range are undefined after an image layout transition. [[synchronization-pipeline-stages]] === Pipeline Stages The work performed by an <> consists of multiple operations, which are performed by a sequence of logically independent execution units known as _pipeline stages_. The exact pipeline stages executed depend on the particular action command that is used, and current command buffer state when the action command was recorded. <>, <>, <>, and <> all execute in different sets of <>. Execution of operations across pipeline stages must: adhere to <>, particularly including <>. Otherwise, execution across pipeline stages may: overlap or execute out of order with regards to other stages, unless otherwise enforced by an execution dependency. [open,refpage='VkPipelineStageFlagBits',desc='Bitmask specifying pipeline stages',type='enums'] -- Several of the synchronization commands include pipeline stage parameters, restricting the <> for that command to just those stages. This allows fine grained control over the exact execution dependencies and accesses performed by action commands. Implementations should: use these pipeline stages to avoid unnecessary stalls or cache flushing. Bits which can be set, specifying pipeline stages, are: include::../api/enums/VkPipelineStageFlagBits.txt[] * ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT specifies the stage of the pipeline where any commands are initially received by the queue. ifdef::VK_NVX_device_generated_commands[] * ename:VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX specifies the stage of the pipeline where device-side generation of commands via flink:vkCmdProcessCommandsNVX is handled. endif::VK_NVX_device_generated_commands[] * ename:VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT specifies the stage of the pipeline where Draw/DispatchIndirect data structures are consumed. ifdef::VK_NVX_device_generated_commands[] This stage also includes reading commands written by flink:vkCmdProcessCommandsNVX. endif::VK_NVX_device_generated_commands[] * ename:VK_PIPELINE_STAGE_VERTEX_INPUT_BIT specifies the stage of the pipeline where vertex and index buffers are consumed. * ename:VK_PIPELINE_STAGE_VERTEX_SHADER_BIT specifies the vertex shader stage. * ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT specifies the tessellation control shader stage. * ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT specifies the tessellation evaluation shader stage. * ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT specifies the geometry shader stage. * ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT specifies the fragment shader stage. * ename:VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where early fragment tests (depth and stencil tests before fragment shading) are performed. This stage also includes <> for framebuffer attachments with a depth/stencil format. * ename:VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where late fragment tests (depth and stencil tests after fragment shading) are performed. This stage also includes <> for framebuffer attachments with a depth/stencil format. * ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT specifies the stage of the pipeline after blending where the final color values are output from the pipeline. This stage also includes <> and multisample resolve operations for framebuffer attachments with a color format. * [[synchronization-pipeline-stages-transfer]] ename:VK_PIPELINE_STAGE_TRANSFER_BIT specifies the execution of copy commands. This includes the operations resulting from all <>, <> (with the exception of flink:vkCmdClearAttachments), and flink:vkCmdCopyQueryPoolResults. * ename:VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT specifies the execution of a compute shader. * ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT specifies the final stage in the pipeline where operations generated by all commands complete execution. * ename:VK_PIPELINE_STAGE_HOST_BIT specifies a pseudo-stage indicating execution on the host of reads/writes of device memory. This stage is not invoked by any commands recorded in a command buffer. * ename:VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT specifies the execution of all graphics pipeline stages, and is equivalent to the logical OR of: ** ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT ** ename:VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT ** ename:VK_PIPELINE_STAGE_VERTEX_INPUT_BIT ** ename:VK_PIPELINE_STAGE_VERTEX_SHADER_BIT ** ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT ** ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT ** ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT ** ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT ** ename:VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT ** ename:VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT ** ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT ** ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT * ename:VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is equivalent to the logical OR of every other pipeline stage flag that is supported on the queue it is used with. [NOTE] .Note ==== An execution dependency with only ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT in the destination stage mask will only prevent that stage from executing in subsequently submitted commands. As this stage does not perform any actual execution, this is not observable - in effect, it does not delay processing of subsequent commands. Similarly an execution dependency with only ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT in the source stage mask will effectively not wait for any prior commands to complete. When defining a memory dependency, using only ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT or ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT would never make any accesses available and/or visible because these stages do not access memory. ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT and ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT are useful for accomplishing layout transitions and queue ownership operations when the required execution dependency is satisfied by other means - for example, semaphore operations between queues. ==== -- [[synchronization-pipeline-stages-masks]] If a synchronization command includes a source stage mask, its first <> only includes execution of the pipeline stages specified in that mask, as well as any <> stages. If a synchronization command includes a destination stage mask, its second <> only includes execution of the pipeline stages specified in that mask, as well as any <> stages. <> are affected in a similar way. If a synchronization command includes a source stage mask, its first <> only includes memory access performed by pipeline stages specified in that mask. If a synchronization command includes a destination stage mask, its second <> only includes memory access performed by pipeline stages specified in that mask. [NOTE] .Note ==== Implementations may: not support synchronization at every pipeline stage for every synchronization operation. If a pipeline stage that an implementation does not support synchronization for appears in a source stage mask, then it may: substitute that stage for any logically later stage. If a pipeline stage that an implementation does not support synchronization for appears in a destination stage mask, then it may: substitute that stage for any logically earlier stage. For example, if an implementation is unable to signal an event immediately after vertex shader execution is complete, it may: instead signal the event after color attachment output has completed. If an implementation makes such a substitution, it must: not affect the semantics of execution or memory dependencies or image and buffer memory barriers. ==== Certain pipeline stages are only available on queues that support a particular set of operations. The following table lists, for each pipeline stage flag, which queue capability flag must: be supported by the queue. When multiple flags are enumerated in the second column of the table, it means that the pipeline stage is supported on the queue if it supports any of the listed capability flags. For further details on queue capabilities see <> and <>. [[synchronization-pipeline-stages-supported]] .Supported pipeline stage flags [cols="60%,40%",options="header"] |==== |Pipeline stage flag | Required queue capability flag |ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT | None required |ename:VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT | ename:VK_QUEUE_GRAPHICS_BIT or ename:VK_QUEUE_COMPUTE_BIT |ename:VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | ename:VK_QUEUE_COMPUTE_BIT |ename:VK_PIPELINE_STAGE_TRANSFER_BIT | ename:VK_QUEUE_GRAPHICS_BIT, ename:VK_QUEUE_COMPUTE_BIT or ename:VK_QUEUE_TRANSFER_BIT |ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | None required |ename:VK_PIPELINE_STAGE_HOST_BIT | None required |ename:VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | ename:VK_QUEUE_GRAPHICS_BIT |ename:VK_PIPELINE_STAGE_ALL_COMMANDS_BIT | None required ifdef::VK_NVX_device_generated_commands[] |ename:VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX | ename:VK_QUEUE_GRAPHICS_BIT or ename:VK_QUEUE_COMPUTE_BIT endif::VK_NVX_device_generated_commands[] |==== [[synchronization-pipeline-stages-order]] Pipeline stages that execute as a result of a command logically complete execution in a specific order, such that completion of a logically later pipeline stage must: not happen-before completion of a logically earlier stage. This means that including any given stage in the source stage mask for a particular synchronization command also implies that any logically earlier stages are included in *A~S~* for that command. Similarly, initiation of a logically earlier pipeline stage must: not happen-after initiation of a logically later pipeline stage. Including any given stage in the destination stage mask for a particular synchronization command also implies that any logically later stages are included in *B~S~* for that command. .Note [NOTE] ==== Logically earlier/later stages are not included when defining the <> of a <>. ==== [[synchronization-pipeline-stages-types]] The order of pipeline stages depends on the particular pipeline; graphics, compute, transfer or host. For the graphics pipeline, the following stages occur in this order: * ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT * ename:VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT * ename:VK_PIPELINE_STAGE_VERTEX_INPUT_BIT * ename:VK_PIPELINE_STAGE_VERTEX_SHADER_BIT * ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT * ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT * ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT * ename:VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT * ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT * ename:VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT * ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT * ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT For the compute pipeline, the following stages occur in this order: * ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT * ename:VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT * ename:VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT * ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT For the transfer pipeline, the following stages occur in this order: * ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT * ename:VK_PIPELINE_STAGE_TRANSFER_BIT * ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT For host operations, only one pipeline stage occurs, so no order is guaranteed: * ename:VK_PIPELINE_STAGE_HOST_BIT ifdef::VK_NVX_device_generated_commands[] For the command processing pipeline, the following stages occur in this order: * ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT * ename:VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX * ename:VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT endif::VK_NVX_device_generated_commands[] [[synchronization-access-types]] === Access Types [open,refpage='VkAccessFlagBits',desc='Bitmask specifying memory access types that will participate in a memory dependency',type='enums'] -- Memory in Vulkan can: be accessed from within shader invocations and via some fixed-function stages of the pipeline. The _access type_ is a function of the <> used, or how a fixed-function stage accesses memory. Each access type corresponds to a bit flag in slink:VkAccessFlagBits. [[synchronization-access-masks]] Some synchronization commands take sets of access types as parameters to define the <> of a memory dependency. If a synchronization command includes a source access mask, its first <> only includes accesses via the access types specified in that mask. Similarly, if a synchronization command includes a destination access mask, its second <> only includes accesses via the access types specified in that mask. Access types that can: be set in an access mask include: include::../api/enums/VkAccessFlagBits.txt[] * ename:VK_ACCESS_INDIRECT_COMMAND_READ_BIT specifies read access to an indirect command structure read as part of an indirect drawing or dispatch command. * ename:VK_ACCESS_INDEX_READ_BIT specifies read access to an index buffer as part of an indexed drawing command, bound by flink:vkCmdBindIndexBuffer. * ename:VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT specifies read access to a vertex buffer as part of a drawing command, bound by flink:vkCmdBindVertexBuffers. * ename:VK_ACCESS_UNIFORM_READ_BIT specifies read access to a <>. * ename:VK_ACCESS_INPUT_ATTACHMENT_READ_BIT specifies read access to an <> within a renderpass during fragment shading. * ename:VK_ACCESS_SHADER_READ_BIT specifies read access to a <>, <>, <>, <>, or <>. * ename:VK_ACCESS_SHADER_WRITE_BIT specifies write access to a <>, <>, or <>. * ename:VK_ACCESS_COLOR_ATTACHMENT_READ_BIT specifies read access to a <>, such as via <>, <>, or via certain <>. ifdef::VK_EXT_blend_operation_advanced[] It does not include <>. * ename:VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT is similar to ename:VK_ACCESS_COLOR_ATTACHMENT_READ_BIT, but also includes <>. endif::VK_EXT_blend_operation_advanced[] * ename:VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT specifies write access to a <> during a <> or via certain <>. * ename:VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT specifies read access to a <>, via <> or via certain <>. * ename:VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT specifies write access to a <>, via <> or via certain <>. * ename:VK_ACCESS_TRANSFER_READ_BIT specifies read access to an image or buffer in a <> operation. * ename:VK_ACCESS_TRANSFER_WRITE_BIT specifies write access to an image or buffer in a <> or <> operation. * ename:VK_ACCESS_HOST_READ_BIT specifies read access by a host operation. Accesses of this type are not performed through a resource, but directly on memory. * ename:VK_ACCESS_HOST_WRITE_BIT specifies write access by a host operation. Accesses of this type are not performed through a resource, but directly on memory. * ename:VK_ACCESS_MEMORY_READ_BIT specifies read access via non-specific entities. These entities include the Vulkan device and host, but may: also include entities external to the Vulkan device or otherwise not part of the core Vulkan pipeline. When included in a destination access mask, makes all available writes visible to all future read accesses on entities known to the Vulkan device. * ename:VK_ACCESS_MEMORY_WRITE_BIT specifies write access via non-specific entities. These entities include the Vulkan device and host, but may: also include entities external to the Vulkan device or otherwise not part of the core Vulkan pipeline. When included in a source access mask, all writes that are performed by entities known to the Vulkan device are made available. When included in a destination access mask, makes all available writes visible to all future write accesses on entities known to the Vulkan device. ifdef::VK_NVX_device_generated_commands[] * ename:VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX specifies reads from sname:VkBuffer inputs to flink:vkCmdProcessCommandsNVX. * ename:VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX specifies writes to the target command buffer in flink:vkCmdProcessCommandsNVX. endif::VK_NVX_device_generated_commands[] Certain access types are only performed by a subset of pipeline stages. Any synchronization command that takes both stage masks and access masks uses both to define the <> - only the specified access types performed by the specified stages are included in the access scope. An application must: not specify an access flag in a synchronization command if it does not include a pipeline stage in the corresponding stage mask that is able to perform accesses of that type. The following table lists, for each access flag, which pipeline stages can: perform that type of access. [[synchronization-access-types-supported]] .Supported access types [cols="50,50",options="header"] |==== |Access flag | Supported pipeline stages |ename:VK_ACCESS_INDIRECT_COMMAND_READ_BIT | ename:VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT |ename:VK_ACCESS_INDEX_READ_BIT | ename:VK_PIPELINE_STAGE_VERTEX_INPUT_BIT |ename:VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | ename:VK_PIPELINE_STAGE_VERTEX_INPUT_BIT |ename:VK_ACCESS_UNIFORM_READ_BIT | ename:VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT, ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or ename:VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |ename:VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |ename:VK_ACCESS_SHADER_READ_BIT | ename:VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT, ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or ename:VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |ename:VK_ACCESS_SHADER_WRITE_BIT | ename:VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT, ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or ename:VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |ename:VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT ifdef::VK_EXT_blend_operation_advanced[] |ename:VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT | ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT endif::VK_EXT_blend_operation_advanced[] |ename:VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |ename:VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | ename:VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, or ename:VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |ename:VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | ename:VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, or ename:VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |ename:VK_ACCESS_TRANSFER_READ_BIT | ename:VK_PIPELINE_STAGE_TRANSFER_BIT |ename:VK_ACCESS_TRANSFER_WRITE_BIT | ename:VK_PIPELINE_STAGE_TRANSFER_BIT |ename:VK_ACCESS_HOST_READ_BIT | ename:VK_PIPELINE_STAGE_HOST_BIT |ename:VK_ACCESS_HOST_WRITE_BIT | ename:VK_PIPELINE_STAGE_HOST_BIT |ename:VK_ACCESS_MEMORY_READ_BIT | N/A |ename:VK_ACCESS_MEMORY_WRITE_BIT | N/A ifdef::VK_NVX_device_generated_commands[] |ename:VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX | ename:VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX |ename:VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX | ename:VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX endif::VK_NVX_device_generated_commands[] |==== [[synchronization-host-access-types]] If a memory object does not have the ename:VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property, then flink:vkFlushMappedMemoryRanges must: be called in order to guarantee that writes to the memory object from the host are made visible to the ename:VK_ACCESS_HOST_WRITE_BIT <>, where it can: be further made available to the device by <>. Similarly, flink:vkInvalidateMappedMemoryRanges must: be called to guarantee that writes which are visible to the ename:VK_ACCESS_HOST_READ_BIT <> are made visible to host operations. If the memory object does have the ename:VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property flag, writes to the memory object from the host are automatically made visible to the ename:VK_ACCESS_HOST_WRITE_BIT <>. Similarly, writes made visible to the ename:VK_ACCESS_HOST_READ_BIT <> are automatically made visible to the host. .Note [NOTE] ==== The flink:vkQueueSubmit command <> if they were flushed before the command executed, so in most cases an explicit memory barrier is not needed for this case. In the few circumstances where a submit does not occur between the host write and the device read access, writes can: be made available by using an explicit memory barrier. ==== -- [[synchronization-framebuffer-regions]] === Framebuffer Region Dependencies <> that operate on, or with respect to, the framebuffer are collectively the _framebuffer-space_ pipeline stages. These stages are: * ename:VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT * ename:VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT * ename:VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT * ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT For these pipeline stages, an execution or memory dependency from the first set of operations to the second set can: either be a single _framebuffer-global_ dependency, or split into multiple _framebuffer-local_ dependencies. A dependency with non-framebuffer-space pipeline stages is neither framebuffer-global nor framebuffer-local. A _framebuffer region_ is a set of sample (x, y, layer, sample) coordinates that is a subset of the entire framebuffer. A single framebuffer-local dependency guarantees that only for a single framebuffer region, the first set of operations and availability operations happen-before visibility operations and the second set of operations. No ordering guarantees are made between framebuffer regions for a framebuffer-local dependency. A framebuffer-global dependency guarantees that the first set of operations for all framebuffer regions happens-before the second set of operations for any framebuffer region. .Note [NOTE] ==== Since fragment invocations are not specified to run in any particular groupings, the size of a framebuffer region is implementation-dependent, not known to the application, and must: be assumed to be no larger than a single sample. ==== If a synchronization command includes a pname:dependencyFlags parameter, and specifies the ename:VK_DEPENDENCY_BY_REGION_BIT flag, then it defines framebuffer-local dependencies for the framebuffer-space pipeline stages in that synchronization command, for all framebuffer regions. If no pname:dependencyFlags parameter is included, or the ename:VK_DEPENDENCY_BY_REGION_BIT flag is not specified, then a framebuffer-global dependency is specified for those stages. The ename:VK_DEPENDENCY_BY_REGION_BIT flag does not affect the dependencies between non-framebuffer-space pipeline stages, nor does it affect the dependencies between framebuffer-space and non-framebuffer-space pipeline stages. .Note [NOTE] ==== Framebuffer-local dependencies are more optimal for most architectures; particularly tile-based architectures - which can keep framebuffer-regions entirely in on-chip registers and thus avoid external bandwidth across such a dependency. Including a framebuffer-global dependency in your rendering will usually force all implementations to flush data to memory, or to a higher level cache, breaking any potential locality optimizations. ==== ifdef::VK_KHX_multiview[] [[synchronization-view-local-dependencies]] === View-Local Dependencies In a render pass instance that has <> enabled, dependencies can be either view-local or view-global. A view-local dependency only includes operations from a single <> from the source subpass in the first synchronization scope, and only includes operations from a single <> from the destination subpass in the second synchronization scope. A view-global dependency includes all views in the view mask of the source and destination subpasses in the corresponding synchronization scopes. If a synchronization command includes a pname:dependencyFlags parameter and specifies the ename:VK_DEPENDENCY_VIEW_LOCAL_BIT_KHX flag, then it defines view-local dependencies for that synchronization command, for all views. If no pname:dependencyFlags parameter is included or the ename:VK_DEPENDENCY_VIEW_LOCAL_BIT_KHX flag is not specified, then a view-global dependency is specified. endif::VK_KHX_multiview[] ifdef::VK_KHX_device_group[] [[synchronization-device-local-dependencies]] === Device-Local Dependencies Dependencies can: be either device-local or non-device-local. A device-local dependency acts as multiple separate dependencies, one for each physical device that executes the synchronization command, where each dependency only includes operations from that physical device in both synchronization scopes. A non-device-local dependency is a single dependency where both synchronization scopes include operations from all physical devices that participate in the synchronization command. For subpass dependencies, all physical devices in the slink:VkDeviceGroupRenderPassBeginInfoKHX::pname:deviceMask participate in the dependency, and for pipeline barriers all physical devices that are set in the command buffer's current device mask participate in the dependency. If a synchronization command includes a pname:dependencyFlags parameter and specifies the ename:VK_DEPENDENCY_DEVICE_GROUP_BIT_KHX flag, then it defines a non-device-local dependency for that synchronization command. If no pname:dependencyFlags parameter is included or the ename:VK_DEPENDENCY_DEVICE_GROUP_BIT_KHX flag is not specified, then it defines device-local dependencies for that synchronization command, for all participating physical devices. Semaphore and event dependencies are device-local and only execute on the one physical device that performs the dependency. endif::VK_KHX_device_group[] [[synchronization-implicit]] == Implicit Synchronization Guarantees A small number of implicit ordering guarantees are provided by Vulkan, ensuring that the order in which commands are submitted is meaningful, and avoiding unnecessary complexity in common operations. [[synchronization-submission-order]] _Submission order_ is a fundamental ordering in Vulkan, giving meaning to the order in which <> are recorded and submitted to a single queue. Explicit and implicit ordering guarantees between commands in Vulkan all work on the premise that this ordering is meaningful. Submission order for any given set of commands is based on the order in which they were recorded to command buffers and then submitted. This order is determined as follows: . The initial order is determined by the order in which flink:vkQueueSubmit commands are executed on the host, for a single queue, from first to last. . The order in which slink:VkSubmitInfo structures are specified in the pname:pSubmits parameter of flink:vkQueueSubmit, from lowest index to highest. . The order in which command buffers are specified in the pname:pCommandBuffers member of slink:VkSubmitInfo, from lowest index to highest. . The order in which commands were recorded to a command buffer on the host, from first to last: ** For commands recorded outside a render pass, this includes all other commands recorded outside a renderpass, including flink:vkCmdBeginRenderPass and flink:vkCmdEndRenderPass commands; it does not directly include commands inside a render pass. ** For commands recorded inside a render pass, this includes all other commands recorded inside the same subpass, including the flink:vkCmdBeginRenderPass and flink:vkCmdEndRenderPass commands that delimit the same renderpass instance; it does not include commands recorded to other subpasses. <> recorded to a command buffer execute the ename:VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT pipeline stage in <> - forming an implicit execution dependency between this stage in each command. <> do not execute any operations on the device, instead they set the state of the command buffer when they execute on the host, in the order that they are recorded. <> consume the current state of the command buffer when they are recorded, and will execute state changes on the device as required to match the recorded state. <>, <> and <> provide additional guarantees based on submission order. Execution of <> within a given command also has a loose ordering, dependent only on a single command. [[synchronization-fences]] == Fences [open,refpage='VkFence',desc='Opaque handle to a fence object',type='handles'] -- Fences are a synchronization primitive that can: be used to insert a dependency from a queue to the host. Fences have two states - signaled and unsignaled. A fence can: be signaled as part of the execution of a <> command. Fences can: be unsignaled on the host with flink:vkResetFences. Fences can: be waited on by the host with the flink:vkWaitForFences command, and the current state can: be queried with flink:vkGetFenceStatus. Fences are represented by sname:VkFence handles: include::../api/handles/VkFence.txt[] -- [open,refpage='vkCreateFence',desc='Create a new fence object',type='protos'] -- To create a fence, call: include::../api/protos/vkCreateFence.txt[] * pname:device is the logical device that creates the fence. * pname:pCreateInfo is a pointer to an instance of the sname:VkFenceCreateInfo structure which contains information about how the fence is to be created. * pname:pAllocator controls host memory allocation as described in the <> chapter. * pname:pFence points to a handle in which the resulting fence object is returned. include::../validity/protos/vkCreateFence.txt[] -- [open,refpage='VkFenceCreateInfo',desc='Structure specifying parameters of a newly created fence',type='structs'] -- The sname:VkFenceCreateInfo structure is defined as: include::../api/structs/VkFenceCreateInfo.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:flags is a bitmask of elink:VkFenceCreateFlagBits specifying the initial state and behavior of the fence. include::../validity/structs/VkFenceCreateInfo.txt[] -- [open,refpage='VkFenceCreateFlagBits',desc='Bitmask specifying initial state and behavior of a fence',type='enums'] -- include::../api/enums/VkFenceCreateFlagBits.txt[] * ename:VK_FENCE_CREATE_SIGNALED_BIT specifies that the fence object is created in the signaled state. Otherwise, it is created in the unsignaled state. -- [open,refpage='vkDestroyFence',desc='Destroy a fence object',type='protos'] -- To destroy a fence, call: include::../api/protos/vkDestroyFence.txt[] * pname:device is the logical device that destroys the fence. * pname:fence is the handle of the fence to destroy. * pname:pAllocator controls host memory allocation as described in the <> chapter. .Valid Usage **** * [[VUID-vkDestroyFence-fence-01120]] All <> commands that refer to pname:fence must: have completed execution * [[VUID-vkDestroyFence-fence-01121]] If sname:VkAllocationCallbacks were provided when pname:fence was created, a compatible set of callbacks must: be provided here * [[VUID-vkDestroyFence-fence-01122]] If no sname:VkAllocationCallbacks were provided when pname:fence was created, pname:pAllocator must: be `NULL` **** include::../validity/protos/vkDestroyFence.txt[] -- [open,refpage='vkGetFenceStatus',desc='Return the status of a fence',type='protos'] -- To query the status of a fence from the host, call: include::../api/protos/vkGetFenceStatus.txt[] * pname:device is the logical device that owns the fence. * pname:fence is the handle of the fence to query. Upon success, fname:vkGetFenceStatus returns the status of the fence object, with the following return codes: .Fence Object Status Codes [width="80%",options="header"] |==== | Status | Meaning | ename:VK_SUCCESS | The fence specified by pname:fence is signaled. | ename:VK_NOT_READY | The fence specified by pname:fence is unsignaled. | ename:VK_DEVICE_LOST | The device has been lost. See <>. |==== If a <> command is pending execution, then the value returned by this command may: immediately be out of date. If the device has been lost (see <>), fname:vkGetFenceStatus may: return any of the above status codes. If the device has been lost and fname:vkGetFenceStatus is called repeatedly, it will eventually return either ename:VK_SUCCESS or ename:VK_DEVICE_LOST. include::../validity/protos/vkGetFenceStatus.txt[] -- [[synchronization-fences-unsignaling]] [open,refpage='vkResetFences',desc='Resets one or more fence objects',type='protos'] -- To set the state of fences to unsignaled from the host, call: include::../api/protos/vkResetFences.txt[] * pname:device is the logical device that owns the fences. * pname:fenceCount is the number of fences to reset. * pname:pFences is a pointer to an array of fence handles to reset. When flink:vkResetFences is executed on the host, it defines a _fence unsignal operation_ for each fence, which resets the fence to the unsignaled state. If any member of pname:pFences is already in the unsignaled state when flink:vkResetFences is executed, then flink:vkResetFences has no effect on that fence. .Valid Usage **** * [[VUID-vkResetFences-pFences-01123]] Any given element of pname:pFences must: not currently be associated with any queue command that has not yet completed execution on that queue **** include::../validity/protos/vkResetFences.txt[] -- [[synchronization-fences-signaling]] When a fence is submitted to a queue as part of a <> command, it defines a memory dependency on the batches that were submitted as part of that command, and defines a _fence signal operation_ which sets the fence to the signaled state. The first <> includes every batch submitted in the same <> command. Fence signal operations that are defined by flink:vkQueueSubmit additionally include in the first synchronization scope all previous queue submissions to the same queue via flink:vkQueueSubmit. The second <> only includes the fence signal operation. The first <> includes all memory access performed by the device. The second <> is empty. [open,refpage='vkWaitForFences',desc='Wait for one or more fences to become signaled',type='protos'] -- To wait for one or more fences to enter the signaled state on the host, call: include::../api/protos/vkWaitForFences.txt[] * pname:device is the logical device that owns the fences. * pname:fenceCount is the number of fences to wait on. * pname:pFences is a pointer to an array of pname:fenceCount fence handles. * pname:waitAll is the condition that must: be satisfied to successfully unblock the wait. If pname:waitAll is ename:VK_TRUE, then the condition is that all fences in pname:pFences are signaled. Otherwise, the condition is that at least one fence in pname:pFences is signaled. * pname:timeout is the timeout period in units of nanoseconds. pname:timeout is adjusted to the closest value allowed by the implementation-dependent timeout accuracy, which may: be substantially longer than one nanosecond, and may: be longer than the requested period. If the condition is satisfied when fname:vkWaitForFences is called, then fname:vkWaitForFences returns immediately. If the condition is not satisfied at the time fname:vkWaitForFences is called, then fname:vkWaitForFences will block and wait up to pname:timeout nanoseconds for the condition to become satisfied. If pname:timeout is zero, then fname:vkWaitForFences does not wait, but simply returns the current state of the fences. ename:VK_TIMEOUT will be returned in this case if the condition is not satisfied, even though no actual wait was performed. If the specified timeout period expires before the condition is satisfied, fname:vkWaitForFences returns ename:VK_TIMEOUT. If the condition is satisfied before pname:timeout nanoseconds has expired, fname:vkWaitForFences returns ename:VK_SUCCESS. If device loss occurs (see <>) before the timeout has expired, fname:vkWaitForFences must: return in finite time with either ename:VK_SUCCESS or ename:VK_DEVICE_LOST. .Note [NOTE] ==== While we guarantee that fname:vkWaitForFences must: return in finite time, no guarantees are made that it returns immediately upon device loss. However, the client can reasonably expect that the delay will be on the order of seconds and that calling fname:vkWaitForFences will not result in a permanently (or seemingly permanently) dead process. ==== include::../validity/protos/vkWaitForFences.txt[] -- [[synchronization-fences-waiting]] An execution dependency is defined by waiting for a fence to become signaled, either via flink:vkWaitForFences or by polling on flink:vkGetFenceStatus. The first <> includes only the fence signal operation. The second <> includes the host operations of flink:vkWaitForFences or flink:vkGetFenceStatus indicating that the fence has become signaled. .Note [NOTE] ==== Signaling a fence and waiting on the host does not guarantee that the results of memory accesses will be visible to the host, as the access scope of a memory dependency defined by a fence only includes device access. A <> or other memory dependency must: be used to guarantee this. See the description of <> for more information. ==== ifdef::VK_EXT_display_control[] include::VK_EXT_display_control/fence_events.txt[] endif::VK_EXT_display_control[] [[synchronization-semaphores]] == Semaphores [open,refpage='VkSemaphore',desc='Opaque handle to a semaphore object',type='handles'] -- Semaphores are a synchronization primitive that can: be used to insert a dependency between batches submitted to queues. Semaphores have two states - signaled and unsignaled. The state of a semaphore can: be signaled after execution of a batch of commands is completed. A batch can: wait for a semaphore to become signaled before it begins execution, and the semaphore is also unsignaled before the batch begins execution. Semaphores are represented by sname:VkSemaphore handles: include::../api/handles/VkSemaphore.txt[] -- [open,refpage='vkCreateSemaphore',desc='Create a new queue semaphore object',type='protos'] -- To create a semaphore, call: include::../api/protos/vkCreateSemaphore.txt[] * pname:device is the logical device that creates the semaphore. * pname:pCreateInfo is a pointer to an instance of the sname:VkSemaphoreCreateInfo structure which contains information about how the semaphore is to be created. * pname:pAllocator controls host memory allocation as described in the <> chapter. * pname:pSemaphore points to a handle in which the resulting semaphore object is returned. When created, the semaphore is in the unsignaled state. include::../validity/protos/vkCreateSemaphore.txt[] -- [open,refpage='VkSemaphoreCreateInfo',desc='Structure specifying parameters of a newly created semaphore',type='structs'] -- The sname:VkSemaphoreCreateInfo structure is defined as: include::../api/structs/VkSemaphoreCreateInfo.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:flags is reserved for future use. include::../validity/structs/VkSemaphoreCreateInfo.txt[] -- ifdef::VK_KHX_external_semaphore[] [open,refpage='VkExportSemaphoreCreateInfoKHX',desc='Structure specifying handle types that can be exported from a semaphore',type='structs'] -- To create a semaphore object that can be exported to external handles, add the slink:VkExportSemaphoreCreateInfoKHX structure to the pname:pNext chain of the slink:VkSemaphoreCreateInfo structure. The sname:VkExportSemaphoreCreateInfoKHX structure is defined as: include::../api/structs/VkExportSemaphoreCreateInfoKHX.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:handleTypes is a bitmask of elink:VkExternalSemaphoreHandleTypeFlagBitsKHX specifying one or more semaphore handle types the application can: export from the resulting allocation. The application can: request multiple handle types for the same semaphore. .Valid Usage **** * [[VUID-VkExportSemaphoreCreateInfoKHX-handleTypes-01124]] The bits in pname:handleTypes must: be supported and compatible, as reported by slink:VkExternalSemaphorePropertiesKHX. **** include::../validity/structs/VkExportSemaphoreCreateInfoKHX.txt[] -- endif::VK_KHX_external_semaphore[] ifdef::VK_KHX_external_semaphore_win32[] [open,refpage='VkExportSemaphoreWin32HandleInfoKHX',desc='Structure specifying additional attributes of Windows handles exported from a semaphore',type='structs'] -- To specify additional attributes of NT handles exported from a semaphore, add the slink:VkExportSemaphoreWin32HandleInfoKHX structure to the pname:pNext chain of the slink:VkSemaphoreCreateInfo structure. The sname:VkExportSemaphoreWin32HandleInfoKHX structure is defined as: include::../api/structs/VkExportSemaphoreWin32HandleInfoKHX.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:pAttributes is a pointer to a Windows code:SECURITY_ATTRIBUTES structure specifying security attributes of the handle. * pname:dwAccess is a code:DWORD specifying access rights of the handle. * pname:name is a NULL-terminated UTF-16 string to associate with the underlying synchronization primitive referenced by NT handles exported from the created semaphore. If this structure is not present, or if pname:pAttributes is set to `NULL`, default security descriptor values will be used, and child processes created by the application will not inherit the handle, as described in the MSDN documentation for "`Synchronization Object Security and Access Rights`"^1^. Further, if the structure is not present, the access rights will be code:DXGI_SHARED_RESOURCE_READ | code:DXGI_SHARED_RESOURCE_WRITE for handles of the following types: ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHX And code:GENERIC_ALL for handles of the following types: ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT_KHX 1:: https://msdn.microsoft.com/en-us/library/windows/desktop/ms686670.aspx .Valid Usage **** * [[VUID-VkExportSemaphoreWin32HandleInfoKHX-handleTypes-01125]] If slink:VkExportSemaphoreCreateInfoKHX::pname:handleTypes does not include ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHX or ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT_KHX, VkExportSemaphoreWin32HandleInfoKHX must: not be in the pname:pNext chain of slink:VkSemaphoreCreateInfo. **** include::../validity/structs/VkExportSemaphoreWin32HandleInfoKHX.txt[] -- [open,refpage='vkGetSemaphoreWin32HandleKHX',desc='Get a Windows HANDLE for a semaphore',type='protos'] -- To export a Windows handle representing the state of a semaphore, call: include::../api/protos/vkGetSemaphoreWin32HandleKHX.txt[] * pname:device is the logical device that created pname:semaphore. * pname:semaphore is the semaphore from which state will be exported. * pname:handleType is the type of handle requested. * pname:pHandle will return the Windows handle representing the semaphore state. The properties of the handle returned depend on the value of pname:handleType. See elink:VkExternalSemaphoreHandleTypeFlagBitsKHX for a description of the properties of the defined external semaphore handle types. For handle types defined as NT handles, the handles returned by fname:vkGetSemaphoreWin32HandleKHX are owned by the application. To avoid leaking resources, the application must: release ownership of them using the fname:CloseHandle system call when they are no longer needed. .Valid Usage **** * [[VUID-vkGetSemaphoreWin32HandleKHX-handleType-01126]] pname:handleType must: have been included in slink:VkExportSemaphoreCreateInfoKHX::pname:handleTypes when pname:semaphore's current state was created. * [[VUID-vkGetSemaphoreWin32HandleKHX-handleType-01127]] If pname:handleType is defined as an NT handle, flink:vkGetSemaphoreWin32HandleKHX must: be called no more than once for each valid unique combination of pname:semaphore and pname:handleType. * [[VUID-vkGetSemaphoreWin32HandleKHX-semaphore-01128]] pname:semaphore must: not currently have its state replaced by imported semaphore state as described below in <> unless that imported semaphore state's handle type was included in slink:VkExternalSemaphorePropertiesKHX::pname:exportFromImportedHandleTypes. * [[VUID-vkGetSemaphoreWin32HandleKHX-handleType-01129]] If pname:handleType refers to a handle type with temporary import semantics, as defined below in <>, there must: be no queue waiting on pname:semaphore. * [[VUID-vkGetSemaphoreWin32HandleKHX-handleType-01130]] If pname:handleType refers to a handle type with temporary import semantics, pname:semaphore must: be signaled, or have an associated <> pending execution. * [[VUID-vkGetSemaphoreWin32HandleKHX-handleType-01131]] pname:handleType must: be defined as an NT handle or a global share handle. **** include::../validity/protos/vkGetSemaphoreWin32HandleKHX.txt[] -- endif::VK_KHX_external_semaphore_win32[] ifdef::VK_KHX_external_semaphore_fd[] [open,refpage='vkGetSemaphoreFdKHX',desc='Get a POSIX file descriptor handle for a semaphore',type='protos'] -- To export a POSIX file descriptor representing the state of a semaphore, call: include::../api/protos/vkGetSemaphoreFdKHX.txt[] * pname:device is the logical device that created pname:semaphore. * pname:semaphore is the semaphore from which state will be exported. * pname:handleType is the type of handle requested. * pname:pFd will return the file descriptor representing the semaphore state. The properties of the file descriptor returned depend on the value of pname:handleType. See elink:VkExternalSemaphoreHandleTypeFlagBitsKHX for a description of the properties of the defined external semaphore handle types. Each call to fname:vkGetSemaphoreFdKHX must: create a new file descriptor and transfer ownership of it to the application. To avoid leaking resources, the application must: release ownership of the file descriptor using the fname:close system call when it is no longer needed, or by importing Vulkan semaphore state from it. .Valid Usage **** * [[VUID-vkGetSemaphoreFdKHX-handleType-01132]] pname:handleType must: have been included in slink:VkExportSemaphoreCreateInfoKHX::pname:handleTypes when pname:semaphore's current state was created. * [[VUID-vkGetSemaphoreFdKHX-semaphore-01133]] pname:semaphore must: not currently have its state replaced by imported semaphore state as described below in <> unless that imported semaphore state's handle type was included in slink:VkExternalSemaphorePropertiesKHX::pname:exportFromImportedHandleTypes. * [[VUID-vkGetSemaphoreFdKHX-handleType-01134]] If pname:handleType refers to a handle type with temporary import semantics, as defined below in <>, there must: be no queue waiting on pname:semaphore. * [[VUID-vkGetSemaphoreFdKHX-handleType-01135]] If pname:handleType refers to a handle type with temporary import semantics, pname:semaphore must: be signaled, or have an associated <> pending execution. * [[VUID-vkGetSemaphoreFdKHX-handleType-01136]] pname:handleType must: be defined as a POSIX file descriptor handle. **** include::../validity/protos/vkGetSemaphoreFdKHX.txt[] -- endif::VK_KHX_external_semaphore_fd[] [open,refpage='vkDestroySemaphore',desc='Destroy a semaphore object',type='protos'] -- To destroy a semaphore, call: include::../api/protos/vkDestroySemaphore.txt[] * pname:device is the logical device that destroys the semaphore. * pname:semaphore is the handle of the semaphore to destroy. * pname:pAllocator controls host memory allocation as described in the <> chapter. .Valid Usage **** * [[VUID-vkDestroySemaphore-semaphore-01137]] All submitted batches that refer to pname:semaphore must: have completed execution * [[VUID-vkDestroySemaphore-semaphore-01138]] If sname:VkAllocationCallbacks were provided when pname:semaphore was created, a compatible set of callbacks must: be provided here * [[VUID-vkDestroySemaphore-semaphore-01139]] If no sname:VkAllocationCallbacks were provided when pname:semaphore was created, pname:pAllocator must: be `NULL` **** include::../validity/protos/vkDestroySemaphore.txt[] -- [[synchronization-semaphores-signaling]] === Semaphore Signaling When a batch is submitted to a queue via a <>, and it includes semaphores to be signaled, it defines a memory dependency on the batch, and defines _semaphore signal operations_ which set the semaphores to the signaled state. The first <> includes every command submitted in the same batch. Semaphore signal operations that are defined by flink:vkQueueSubmit additionally include all batches previously submitted to the same queue via flink:vkQueueSubmit, including batches that are submitted in the same <> command, but at a lower index within the array of batches. The second <> includes only the semaphore signal operation. The first <> includes all memory access performed by the device. The second <> is empty. [[synchronization-semaphores-waiting]] === Semaphore Waiting & Unsignaling When a batch is submitted to a queue via a <>, and it includes semaphores to be waited on, it defines a memory dependency between prior semaphore signal operations and the batch, and defines _semaphore unsignal operations_ which set the semaphores to the unsignaled state. The first synchronization scope includes all semaphore signal operations that operate on semaphores waited on in the same batch, and that happen-before the wait completes. The second <> includes every command submitted in the same batch. In the case of flink:vkQueueSubmit, the second synchronization scope is limited to operations on the pipeline stages determined by the <> specified by the corresponding element of pname:pWaitDstStageMask. Also, in the case of flink:vkQueueSubmit, the second synchronization scope additionally includes all batches subsequently submitted to the same queue via flink:vkQueueSubmit, including batches that are submitted in the same <> command, but at a higher index within the array of batches. The first <> is empty. The second <> includes all memory access performed by the device. The semaphore unsignal operation happens-after the first set of operations in the execution dependency, and happens-before the second set of operations in the execution dependency. .Note [NOTE] ==== Unlike fences or events, the act of waiting for a semaphore also unsignals that semaphore. If two operations are separately specified to wait for the same semaphore, and there are no other execution dependencies between those operations, behaviour is undefined. An execution dependency must: be present that guarantees that the semaphore unsignal operation for the first of those waits, happens-before the semaphore is signalled again, and before the second unsignal operation. Semaphore waits and signals should thus occur in discrete 1:1 pairs. ==== ifdef::VK_KHR_swapchain[] .Note [NOTE] ==== A common scenario for using pname:pWaitDstStageMask with values other than ename:VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is when synchronizing a window system presentation operation against subsequent command buffers which render the next frame. In this case, a presentation image must: not be overwritten until the presentation operation completes, but other pipeline stages can: execute without waiting. A mask of ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT prevents subsequent color attachment writes from executing until the semaphore signals. Some implementations may: be able to execute transfer operations and/or vertex processing work before the semaphore is signaled. If an image layout transition needs to be performed on a presentable image before it is used in a framebuffer, that can: be performed as the first operation submitted to the queue after acquiring the image, and should: not prevent other work from overlapping with the presentation operation. For example, a sname:VkImageMemoryBarrier could use: * pname:srcStageMask = ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT * pname:srcAccessMask = 0 * pname:dstStageMask = ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT * pname:dstAccessMask = ename:VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | ename:VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. * pname:oldLayout = ename:VK_IMAGE_LAYOUT_PRESENT_SRC_KHR * pname:newLayout = ename:VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL Alternatively, pname:oldLayout can: be ename:VK_IMAGE_LAYOUT_UNDEFINED, if the image's contents need not be preserved. This barrier accomplishes a dependency chain between previous presentation operations and subsequent color attachment output operations, with the layout transition performed in between, and does not introduce a dependency between previous work and any vertex processing stages. More precisely, the semaphore signals after the presentation operation completes, the semaphore wait stalls the ename:VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT stage, and there is a dependency from that same stage to itself with the layout transition performed in between. ==== endif::VK_KHR_swapchain[] [[synchronization-semaphores-waiting-state]] === Semaphore State Requirements For Wait Operations Before waiting on a semaphore, the application must: ensure the semaphore is in a valid state for a wait operation. Specifically, when a <> is submitted to a queue: * The semaphore must: be signaled, or have an associated <> that is pending execution. * There must: be no other queue waiting on the same semaphore when the operation executes. ifdef::VK_KHX_external_semaphore[] Generally, the implementation behavior will be undefined when applications fail to ensure these requirements are met. However, to avoid requiring Vulkan instances that import semaphore state to trust the source of that state, the side effects of violating the requirements are better defined in certain cases. When the semaphore that violates the requirements is using imported state at the time of the violation, the implementation must: ensure side effects are limited to one or more of the following: * Returning the error code ename:VK_ERROR_INITIALIZATION_FAILED from the command which resulted in the violation. * Allowing the logical device on which the violation occured to enter an undefined state immediately or in the future and returning the error code ename:VK_ERROR_DEVICE_LOST from any subsequent command, including the one causing the violation, after the device enters such a state. * Continuing execution of the violating command or operation as if the semaphore wait completed successfully after an implementation-dependent timeout. In this case, the state of the semaphore becomes undefined. The semaphore must: be destroyed or have its state replaced by an import operation to again meet valid usage requirements. [[synchronization-semaphores-importing]] === Importing Semaphore State Applications may: import semaphore state into an existing semaphore using an external semaphore handle. Doing so releases any existing state as if flink:vkDestroySemaphore had been called on the target semaphore. As such, similar usage restrictions to those applied to fname:vkDestroySemaphore are applied to any command that imports semaphore state. The effects of the import operation will be either temporary or permanent, depending on the type of handle used to perform the import. If the import is temporary, the implementation must: restore the semaphore to its prior permanent state when executing the next semaphore signal operation. If the import is permanent, the signaled status of all semaphores sharing the same semaphore state must: be equivalent. Semaphore signaling and waiting operations performed on any semaphore in the set of semaphores sharing semaphore state must: behave the same as if the set were a single semaphore. ifdef::VK_KHR_swapchain[] Passing a semaphore to flink:vkAcquireNextImageKHR is equivalent to temporarily importing semaphore state to that semaphore. endif::VK_KHR_swapchain[] When a semaphore is using imported state, its slink:VkExportSemaphoreCreateInfoKHX::pname:handleTypes value is that specified when creating the semaphore from which the state was exported, rather than that specified when creating the semaphore. ifdef::VK_KHR_swapchain[] [NOTE] .Note ==== Because the exportable handle types of an imported semaphore correspond to its current imported state, and flink:vkAcquireNextImageKHR behaves the same as a temporary import operation for which the source semaphore is opaque to the application, applications have no way of determining whether any external handle types can: be exported from a semaphore in this state. Therefore, applications must: not attempt to export external handles from semaphores using temporarily imported state from flink:vkAcquireNextImageKHR. ==== endif::VK_KHR_swapchain[] When importing semaphore state, it is the responsibility of the application to ensure the external handles meet all valid usage requirements. However, implementations must: perform sufficient validation of external handles to ensure that the operation results in valid semaphore state which will not cause program termination, device loss, queue stalls, or corruption of other resources when used as allowed according to its import parameters, and excepting those side effects allowed for violations of the <> rules. If the external handle provided does not meet these requirements, the implementation must: fail the semaphore state import operation with the error code ename:VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX. endif::VK_KHX_external_semaphore[] ifdef::VK_KHX_external_semaphore_win32[] [open,refpage='vkImportSemaphoreWin32HandleKHX',desc='Import a semaphore from a Windows HANDLE',type='protos'] -- To import semaphore state from a Windows handle, call: include::../api/protos/vkImportSemaphoreWin32HandleKHX.txt[] * pname:device is the logical device that created the semaphore. * pname:pImportSemaphoreWin32HandleInfo points to a slink:VkImportSemaphoreWin32HandleInfoKHX structure specifying the semaphore and import parameters. Importing semaphore state from Windows handles does not transfer ownership of the handle to the Vulkan implementation. For handle types defined as NT handles, the application must: release ownership using the fname:CloseHandle system call when the handle is no longer needed. include::../validity/protos/vkImportSemaphoreWin32HandleKHX.txt[] -- [open,refpage='VkImportSemaphoreWin32HandleInfoKHX',desc='Structure specifying Windows handle to import to a semaphore',type='structs'] -- The sname:VkImportSemaphoreWin32HandleInfoKHX structure is defined as: include::../api/structs/VkImportSemaphoreWin32HandleInfoKHX.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:semaphore is the semaphore into which the state will be imported. * pname:handleType specifies the type of pname:handle. * pname:handle is the external handle to import. The handle types supported by pname:handleType are: [[synchronization-handletypes-win32]] .Handle Type Permanence for VkImportSemaphoreWin32HandleInfoKHX [width="80%",options="header"] |==== | Handle Type | Permanence | ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHX | Permanent | ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHX | Permanent | ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT_KHX | Permanent |==== .Valid Usage **** * [[VUID-VkImportSemaphoreWin32HandleInfoKHX-handleType-01140]] pname:handleType must: be a value included in the <> table. * [[VUID-VkImportSemaphoreWin32HandleInfoKHX-handleType-01141]] The semaphore from which pname:handleType was exported must: have been created on the same underlying physical device as pname:semaphore. **** include::../validity/structs/VkImportSemaphoreWin32HandleInfoKHX.txt[] -- endif::VK_KHX_external_semaphore_win32[] ifdef::VK_KHX_external_semaphore_fd[] [open,refpage='vkImportSemaphoreFdKHX',desc='Import a semaphore from a POSIX file descriptor',type='protos'] -- To import semaphore state from a POSIX file descriptor, call: include::../api/protos/vkImportSemaphoreFdKHX.txt[] * pname:device is the logical device that created the semaphore. * pname:pImportSemaphoreFdInfo points to a slink:VkImportSemaphoreFdInfoKHX structure specifying the semaphore and import parameters. Importing semaphore state from a file descriptor transfers ownership of the file descriptor from the application to the Vulkan implementation. The application must: not perform any operations on the file descriptor after a successful import. .Valid Usage **** * [[VUID-vkImportSemaphoreFdKHX-semaphore-01142]] pname:semaphore must: not be associated with any queue command that has not yet completed execution on that queue **** include::../validity/protos/vkImportSemaphoreFdKHX.txt[] -- [open,refpage='VkImportSemaphoreFdInfoKHX',desc='Structure specifying POSIX file descriptor to import to a semaphore',type='structs'] -- The sname:VkImportSemaphoreFdInfoKHX structure is defined as: include::../api/structs/VkImportSemaphoreFdInfoKHX.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:semaphore is the semaphore into which the state will be imported. * pname:handleType specifies the type of pname:fd. * pname:fd is the external handle to import. The handle types supported by pname:handleType are: [[synchronization-handletypes-fd]] .Handle Type Permanence for VkImportSemaphoreFdInfoKHX [width="80%",options="header"] |==== | Handle Type | Permanence | ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX | Permanent | ename:VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_FENCE_FD_BIT_KHX | Temporary |==== .Valid Usage **** * [[VUID-VkImportSemaphoreFdInfoKHX-handleType-01143]] pname:handleType must: be a value included in the <> table. * [[VUID-VkImportSemaphoreFdInfoKHX-handleType-01144]] The semaphore from which pname:handleType was exported must: have been created on the same underlying physical device as pname:semaphore. **** include::../validity/structs/VkImportSemaphoreFdInfoKHX.txt[] -- endif::VK_KHX_external_semaphore_fd[] [[synchronization-events]] == Events [open,refpage='VkEvent',desc='Opaque handle to a event object',type='handles'] -- Events are a synchronization primitive that can: be used to insert a fine-grained dependency between commands submitted to the same queue, or between the host and a queue. Events have two states - signaled and unsignaled. An application can: signal an event, or unsignal it, on either the host or the device. A device can: wait for an event to become signaled before executing further operations. No command exists to wait for an event to become signaled on the host, but the current state of an event can: be queried. Events are represented by sname:VkEvent handles: include::../api/handles/VkEvent.txt[] -- [open,refpage='vkCreateEvent',desc='Create a new event object',type='protos'] -- To create an event, call: include::../api/protos/vkCreateEvent.txt[] * pname:device is the logical device that creates the event. * pname:pCreateInfo is a pointer to an instance of the sname:VkEventCreateInfo structure which contains information about how the event is to be created. * pname:pAllocator controls host memory allocation as described in the <> chapter. * pname:pEvent points to a handle in which the resulting event object is returned. When created, the event object is in the unsignaled state. include::../validity/protos/vkCreateEvent.txt[] -- [open,refpage='VkEventCreateInfo',desc='Structure specifying parameters of a newly created event',type='structs'] -- The sname:VkEventCreateInfo structure is defined as: include::../api/structs/VkEventCreateInfo.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:flags is reserved for future use. include::../validity/structs/VkEventCreateInfo.txt[] -- [open,refpage='vkDestroyEvent',desc='Destroy an event object',type='protos'] -- To destroy an event, call: include::../api/protos/vkDestroyEvent.txt[] * pname:device is the logical device that destroys the event. * pname:event is the handle of the event to destroy. * pname:pAllocator controls host memory allocation as described in the <> chapter. .Valid Usage **** * [[VUID-vkDestroyEvent-event-01145]] All submitted commands that refer to pname:event must: have completed execution * [[VUID-vkDestroyEvent-event-01146]] If sname:VkAllocationCallbacks were provided when pname:event was created, a compatible set of callbacks must: be provided here * [[VUID-vkDestroyEvent-event-01147]] If no sname:VkAllocationCallbacks were provided when pname:event was created, pname:pAllocator must: be `NULL` **** include::../validity/protos/vkDestroyEvent.txt[] -- [open,refpage='vkGetEventStatus',desc='Retrieve the status of an event object',type='protos'] -- To query the state of an event from the host, call: include::../api/protos/vkGetEventStatus.txt[] * pname:device is the logical device that owns the event. * pname:event is the handle of the event to query. Upon success, fname:vkGetEventStatus returns the state of the event object with the following return codes: .Event Object Status Codes [width="80%",options="header"] |==== | Status | Meaning | ename:VK_EVENT_SET | The event specified by pname:event is signaled. | ename:VK_EVENT_RESET | The event specified by pname:event is unsignaled. |==== If a fname:vkCmdSetEvent or fname:vkCmdResetEvent command is in a command buffer that is in the <>, then the value returned by this command may: immediately be out of date. The state of an event can: be updated by the host. The state of the event is immediately changed, and subsequent calls to fname:vkGetEventStatus will return the new state. If an event is already in the requested state, then updating it to the same state has no effect. include::../validity/protos/vkGetEventStatus.txt[] -- [[synchronization-events-signaling-host]] [open,refpage='vkSetEvent',desc='Set an event to signaled state',type='protos'] -- To set the state of an event to signaled from the host, call: include::../api/protos/vkSetEvent.txt[] * pname:device is the logical device that owns the event. * pname:event is the event to set. When flink:vkSetEvent is executed on the host, it defines an _event signal operation_ which sets the event to the signaled state. If pname:event is already in the signaled state when flink:vkSetEvent is executed, then flink:vkSetEvent has no effect, and no event signal operation occurs. include::../validity/protos/vkSetEvent.txt[] -- [[synchronization-events-unsignaling-host]] [open,refpage='vkResetEvent',desc='Reset an event to non-signaled state',type='protos'] -- To set the state of an event to unsignaled from the host, call: include::../api/protos/vkResetEvent.txt[] * pname:device is the logical device that owns the event. * pname:event is the event to reset. When flink:vkResetEvent is executed on the host, it defines an _event unsignal operation_ which resets the event to the unsignaled state. If pname:event is already in the unsignaled state when flink:vkResetEvent is executed, then flink:vkResetEvent has no effect, and no event unsignal operation occurs. .Valid Usage **** * [[VUID-vkResetEvent-event-01148]] pname:event must: not be waited on by a fname:vkCmdWaitEvents command that is currently executing **** include::../validity/protos/vkResetEvent.txt[] -- The state of an event can: also be updated on the device by commands inserted in command buffers. [[synchronization-events-signaling-device]] [open,refpage='vkCmdSetEvent',desc='Set an event object to signaled state',type='protos'] -- To set the state of an event to signaled from a device, call: include::../api/protos/vkCmdSetEvent.txt[] * pname:commandBuffer is the command buffer into which the command is recorded. * pname:event is the event that will be signaled. * pname:stageMask specifies the <> used to determine when the pname:event is signaled. When flink:vkCmdSetEvent is submitted to a queue, it defines an execution dependency on commands that were submitted before it, and defines an event signal operation which sets the event to the signaled state. The first <> includes every command previously submitted to the same queue, including those in the same command buffer and batch. The synchronization scope is limited to operations on the pipeline stages determined by the <> specified by pname:stageMask. The second <> includes only the event signal operation. If pname:event is already in the signaled state when flink:vkCmdSetEvent is executed on the device, then flink:vkCmdSetEvent has no effect, no event signal operation occurs, and no execution dependency is generated. .Valid Usage **** * [[VUID-vkCmdSetEvent-stageMask-01149]] pname:stageMask must: not include ename:VK_PIPELINE_STAGE_HOST_BIT * [[VUID-vkCmdSetEvent-stageMask-01150]] If the <> feature is not enabled, pname:stageMask must: not contain ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT * [[VUID-vkCmdSetEvent-stageMask-01151]] If the <> feature is not enabled, pname:stageMask must: not contain ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT ifdef::VK_KHX_device_group[] * [[VUID-vkCmdSetEvent-commandBuffer-01152]] pname:commandBuffer's current device mask must: include exactly one physical device. endif::VK_KHX_device_group[] **** include::../validity/protos/vkCmdSetEvent.txt[] -- [[synchronization-events-unsignaling-device]] [open,refpage='vkCmdResetEvent',desc='Reset an event object to non-signaled state',type='protos'] -- To set the state of an event to unsignaled from a device, call: include::../api/protos/vkCmdResetEvent.txt[] * pname:commandBuffer is the command buffer into which the command is recorded. * pname:event is the event that will be unsignaled. * pname:stageMask is a bitmask of elink:VkPipelineStageFlagBits specifying the <> used to determine when the pname:event is unsignaled. When flink:vkCmdResetEvent is submitted to a queue, it defines an execution dependency on commands that were submitted before it, and defines an event unsignal operation which resets the event to the unsignaled state. The first <> includes every command previously submitted to the same queue, including those in the same command buffer and batch. The synchronization scope is limited to operations on the pipeline stages determined by the <> specified by pname:stageMask. The second <> includes only the event unsignal operation. If pname:event is already in the unsignaled state when flink:vkCmdResetEvent is executed on the device, then flink:vkCmdResetEvent has no effect, no event unsignal operation occurs, and no execution dependency is generated. .Valid Usage **** * [[VUID-vkCmdResetEvent-stageMask-01153]] pname:stageMask must: not include ename:VK_PIPELINE_STAGE_HOST_BIT * [[VUID-vkCmdResetEvent-stageMask-01154]] If the <> feature is not enabled, pname:stageMask must: not contain ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT * [[VUID-vkCmdResetEvent-stageMask-01155]] If the <> feature is not enabled, pname:stageMask must: not contain ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT * [[VUID-vkCmdResetEvent-event-01156]] When this command executes, pname:event must: not be waited on by a fname:vkCmdWaitEvents command that is currently executing ifdef::VK_KHX_device_group[] * [[VUID-vkCmdResetEvent-commandBuffer-01157]] pname:commandBuffer's current device mask must: include exactly one physical device. endif::VK_KHX_device_group[] **** include::../validity/protos/vkCmdResetEvent.txt[] -- [open,refpage='vkCmdWaitEvents',desc='Wait for one or more events and insert a set of memory',type='protos'] -- To wait for one or more events to enter the signaled state on a device, call: [[synchronization-events-waiting-device]] include::../api/protos/vkCmdWaitEvents.txt[] * pname:commandBuffer is the command buffer into which the command is recorded. * pname:eventCount is the length of the pname:pEvents array. * pname:pEvents is an array of event object handles to wait on. * pname:srcStageMask is a bitmask of elink:VkPipelineStageFlagBits specifying the <>. * pname:dstStageMask is a bitmask of elink:VkPipelineStageFlagBits specifying the <>. * pname:memoryBarrierCount is the length of the pname:pMemoryBarriers array. * pname:pMemoryBarriers is a pointer to an array of slink:VkMemoryBarrier structures. * pname:bufferMemoryBarrierCount is the length of the pname:pBufferMemoryBarriers array. * pname:pBufferMemoryBarriers is a pointer to an array of slink:VkBufferMemoryBarrier structures. * pname:imageMemoryBarrierCount is the length of the pname:pImageMemoryBarriers array. * pname:pImageMemoryBarriers is a pointer to an array of slink:VkImageMemoryBarrier structures. When fname:vkCmdWaitEvents is submitted to a queue, it defines a memory dependency between prior event signal operations, and subsequent commands. The first synchronization scope only includes event signal operations that operate on members of pname:pEvents, and the operations that happened-before the event signal operations. Event signal operations performed by flink:vkCmdSetEvent that were previously submitted to the same queue are included in the first synchronization scope, if the <> pipeline stage in their pname:stageMask parameter is <> than or equal to the <> pipeline stage in pname:srcStageMask. Event signal operations performed by flink:vkSetEvent are only included in the first synchronization scope if ename:VK_PIPELINE_STAGE_HOST_BIT is included in pname:srcStageMask. The second <> includes commands subsequently submitted to the same queue, including those in the same command buffer and batch. The second synchronization scope is limited to operations on the pipeline stages determined by the <> specified by pname:dstStageMask. The first <> is limited to access in the pipeline stages determined by the <> specified by pname:srcStageMask. Within that, the first access scope only includes the first access scopes defined by elements of the pname:pMemoryBarriers, pname:pBufferMemoryBarriers and pname:pImageMemoryBarriers arrays, which each define a set of <>. If no memory barriers are specified, then the first access scope includes no accesses. The second <> is limited to access in the pipeline stages determined by the <> specified by pname:dstStageMask. Within that, the second access scope only includes the second access scopes defined by elements of the pname:pMemoryBarriers, pname:pBufferMemoryBarriers and pname:pImageMemoryBarriers arrays, which each define a set of <>. If no memory barriers are specified, then the second access scope includes no accesses. [NOTE] .Note ==== flink:vkCmdWaitEvents is used with flink:vkCmdSetEvent to define a memory dependency between two sets of action commands, roughly in the same way as pipeline barriers, but split into two commands such that work between the two may: execute unhindered. ==== [NOTE] .Note ==== Applications should: be careful to avoid race conditions when using events. There is no direct ordering guarantee between a flink:vkCmdResetEvent command and a flink:vkCmdWaitEvents command submitted after it, so some other execution dependency must: be included between these commands (e.g. a semaphore). ==== .Valid Usage **** * [[VUID-vkCmdWaitEvents-srcStageMask-01158]] pname:srcStageMask must: be the bitwise OR of the pname:stageMask parameter used in previous calls to fname:vkCmdSetEvent with any of the members of pname:pEvents and ename:VK_PIPELINE_STAGE_HOST_BIT if any of the members of pname:pEvents was set using fname:vkSetEvent * [[VUID-vkCmdWaitEvents-srcStageMask-01159]] If the <> feature is not enabled, pname:srcStageMask must: not contain ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT * [[VUID-vkCmdWaitEvents-dstStageMask-01160]] If the <> feature is not enabled, pname:dstStageMask must: not contain ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT * [[VUID-vkCmdWaitEvents-srcStageMask-01161]] If the <> feature is not enabled, pname:srcStageMask must: not contain ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT * [[VUID-vkCmdWaitEvents-dstStageMask-01162]] If the <> feature is not enabled, pname:dstStageMask must: not contain ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT * [[VUID-vkCmdWaitEvents-pEvents-01163]] If pname:pEvents includes one or more events that will be signaled by fname:vkSetEvent after pname:commandBuffer has been submitted to a queue, then fname:vkCmdWaitEvents must: not be called inside a render pass instance * [[VUID-vkCmdWaitEvents-srcStageMask-01164]] Any pipeline stage included in pname:srcStageMask or pname:dstStageMask must: be supported by the capabilities of the queue family specified by the pname:queueFamilyIndex member of the slink:VkCommandPoolCreateInfo structure that was used to create the sname:VkCommandPool that pname:commandBuffer was allocated from, as specified in the <>. * [[VUID-vkCmdWaitEvents-pMemoryBarriers-01165]] Any given element of pname:pMemoryBarriers, pname:pBufferMemoryBarriers or pname:pImageMemoryBarriers must: not have any access flag included in its pname:srcAccessMask member if that bit is not supported by any of the pipeline stages in pname:srcStageMask, as specified in the <>. * [[VUID-vkCmdWaitEvents-pMemoryBarriers-01166]] Any given element of pname:pMemoryBarriers, pname:pBufferMemoryBarriers or pname:pImageMemoryBarriers must: not have any access flag included in its pname:dstAccessMask member if that bit is not supported by any of the pipeline stages in pname:dstStageMask, as specified in the <>. ifdef::VK_KHX_device_group[] * [[VUID-vkCmdWaitEvents-commandBuffer-01167]] pname:commandBuffer's current device mask must: include exactly one physical device. endif::VK_KHX_device_group[] **** include::../validity/protos/vkCmdWaitEvents.txt[] -- [[synchronization-pipeline-barriers]] == Pipeline Barriers flink:vkCmdPipelineBarrier is a synchronization command that inserts a dependency between commands submitted to the same queue, or between commands in the same subpass. [open,refpage='vkCmdPipelineBarrier',desc='Insert a memory dependency',type='protos'] -- To record a pipeline barrier, call: include::../api/protos/vkCmdPipelineBarrier.txt[] * pname:commandBuffer is the command buffer into which the command is recorded. * pname:srcStageMask is a bitmask of elink:VkPipelineStageFlagBits specifying the <>. * pname:dstStageMask is a bitmask of elink:VkPipelineStageFlagBits specifying the <>. * pname:dependencyFlags is a bitmask of elink:VkDependencyFlagBits specifying how execution and memory dependencies are formed. * pname:memoryBarrierCount is the length of the pname:pMemoryBarriers array. * pname:pMemoryBarriers is a pointer to an array of slink:VkMemoryBarrier structures. * pname:bufferMemoryBarrierCount is the length of the pname:pBufferMemoryBarriers array. * pname:pBufferMemoryBarriers is a pointer to an array of slink:VkBufferMemoryBarrier structures. * pname:imageMemoryBarrierCount is the length of the pname:pImageMemoryBarriers array. * pname:pImageMemoryBarriers is a pointer to an array of slink:VkImageMemoryBarrier structures. When flink:vkCmdPipelineBarrier is submitted to a queue, it defines a memory dependency between commands that were submitted before it, and those submitted after it. If flink:vkCmdPipelineBarrier was recorded outside a render pass instance, the first <> includes every command submitted to the same queue before it, including those in the same command buffer and batch. If flink:vkCmdPipelineBarrier was recorded inside a render pass instance, the first synchronization scope includes only commands submitted before it within the same subpass. In either case, the first synchronization scope is limited to operations on the pipeline stages determined by the <> specified by pname:srcStageMask. If flink:vkCmdPipelineBarrier was recorded outside a render pass instance, the second <> includes every command submitted to the same queue after it, including those in the same command buffer and batch. If flink:vkCmdPipelineBarrier was recorded inside a render pass instance, the second synchronization scope includes only commands submitted after it within the same subpass. In either case, the second synchronization scope is limited to operations on the pipeline stages determined by the <> specified by pname:dstStageMask. The first <> is limited to access in the pipeline stages determined by the <> specified by pname:srcStageMask. Within that, the first access scope only includes the first access scopes defined by elements of the pname:pMemoryBarriers, pname:pBufferMemoryBarriers and pname:pImageMemoryBarriers arrays, which each define a set of <>. If no memory barriers are specified, then the first access scope includes no accesses. The second <> is limited to access in the pipeline stages determined by the <> specified by pname:dstStageMask. Within that, the second access scope only includes the second access scopes defined by elements of the pname:pMemoryBarriers, pname:pBufferMemoryBarriers and pname:pImageMemoryBarriers arrays, which each define a set of <>. If no memory barriers are specified, then the second access scope includes no accesses. If pname:dependencyFlags includes ename:VK_DEPENDENCY_BY_REGION_BIT, then any dependency between <> pipeline stages is <> - otherwise it is <>. .Valid Usage **** * [[VUID-vkCmdPipelineBarrier-srcStageMask-01168]] If the <> feature is not enabled, pname:srcStageMask must: not contain ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT * [[VUID-vkCmdPipelineBarrier-dstStageMask-01169]] If the <> feature is not enabled, pname:dstStageMask must: not contain ename:VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT * [[VUID-vkCmdPipelineBarrier-srcStageMask-01170]] If the <> feature is not enabled, pname:srcStageMask must: not contain ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT * [[VUID-vkCmdPipelineBarrier-dstStageMask-01171]] If the <> feature is not enabled, pname:dstStageMask must: not contain ename:VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or ename:VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT * [[VUID-vkCmdPipelineBarrier-pDependencies-01172]] If fname:vkCmdPipelineBarrier is called within a render pass instance, the render pass must: have been created with a sname:VkSubpassDependency instance in pname:pDependencies that expresses a dependency from the current subpass to itself. * [[VUID-vkCmdPipelineBarrier-srcStageMask-01173]] If fname:vkCmdPipelineBarrier is called within a render pass instance, pname:srcStageMask must: contain a subset of the bit values in the pname:srcStageMask member of that instance of sname:VkSubpassDependency * [[VUID-vkCmdPipelineBarrier-dstStageMask-01174]] If fname:vkCmdPipelineBarrier is called within a render pass instance, pname:dstStageMask must: contain a subset of the bit values in the pname:dstStageMask member of that instance of sname:VkSubpassDependency * [[VUID-vkCmdPipelineBarrier-srcAccessMask-01175]] If fname:vkCmdPipelineBarrier is called within a render pass instance, the pname:srcAccessMask of any element of pname:pMemoryBarriers or pname:pImageMemoryBarriers must: contain a subset of the bit values the pname:srcAccessMask member of that instance of sname:VkSubpassDependency * [[VUID-vkCmdPipelineBarrier-dstAccessMask-01176]] If fname:vkCmdPipelineBarrier is called within a render pass instance, the pname:dstAccessMask of any element of pname:pMemoryBarriers or pname:pImageMemoryBarriers must: contain a subset of the bit values the pname:dstAccessMask member of that instance of sname:VkSubpassDependency * [[VUID-vkCmdPipelineBarrier-dependencyFlags-01177]] If fname:vkCmdPipelineBarrier is called within a render pass instance, pname:dependencyFlags must: be equal to the pname:dependencyFlags member of that instance of sname:VkSubpassDependency * [[VUID-vkCmdPipelineBarrier-bufferMemoryBarrierCount-01178]] If fname:vkCmdPipelineBarrier is called within a render pass instance, pname:bufferMemoryBarrierCount must: be `0` * [[VUID-vkCmdPipelineBarrier-image-01179]] If fname:vkCmdPipelineBarrier is called within a render pass instance, the pname:image member of any element of pname:pImageMemoryBarriers must: be equal to one of the elements of pname:pAttachments that the current pname:framebuffer was created with, that is also referred to by one of the elements of the pname:pColorAttachments, pname:pResolveAttachments or pname:pDepthStencilAttachment members of the sname:VkSubpassDescription instance that the current subpass was created with * [[VUID-vkCmdPipelineBarrier-oldLayout-01180]] If fname:vkCmdPipelineBarrier is called within a render pass instance, the pname:oldLayout and pname:newLayout members of any element of pname:pImageMemoryBarriers must: be equal to the pname:layout member of an element of the pname:pColorAttachments, pname:pResolveAttachments or pname:pDepthStencilAttachment members of the sname:VkSubpassDescription instance that the current subpass was created with, that refers to the same pname:image * [[VUID-vkCmdPipelineBarrier-oldLayout-01181]] If fname:vkCmdPipelineBarrier is called within a render pass instance, the pname:oldLayout and pname:newLayout members of an element of pname:pImageMemoryBarriers must: be equal * [[VUID-vkCmdPipelineBarrier-srcQueueFamilyIndex-01182]] If fname:vkCmdPipelineBarrier is called within a render pass instance, the pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex members of any element of pname:pImageMemoryBarriers must: be ename:VK_QUEUE_FAMILY_IGNORED * [[VUID-vkCmdPipelineBarrier-srcStageMask-01183]] Any pipeline stage included in pname:srcStageMask or pname:dstStageMask must: be supported by the capabilities of the queue family specified by the pname:queueFamilyIndex member of the slink:VkCommandPoolCreateInfo structure that was used to create the sname:VkCommandPool that pname:commandBuffer was allocated from, as specified in the <>. * [[VUID-vkCmdPipelineBarrier-pMemoryBarriers-01184]] Any given element of pname:pMemoryBarriers, pname:pBufferMemoryBarriers or pname:pImageMemoryBarriers must: not have any access flag included in its pname:srcAccessMask member if that bit is not supported by any of the pipeline stages in pname:srcStageMask, as specified in the <>. * [[VUID-vkCmdPipelineBarrier-pMemoryBarriers-01185]] Any given element of pname:pMemoryBarriers, pname:pBufferMemoryBarriers or pname:pImageMemoryBarriers must: not have any access flag included in its pname:dstAccessMask member if that bit is not supported by any of the pipeline stages in pname:dstStageMask, as specified in the <>. ifdef::VK_KHX_multiview[] * [[VUID-vkCmdPipelineBarrier-dependencyFlags-01186]] If fname:vkCmdPipelineBarrier is called outside of a render pass instance, pname:dependencyFlags must: not include ename:VK_DEPENDENCY_VIEW_LOCAL_BIT_KHX endif::VK_KHX_multiview[] **** include::../validity/protos/vkCmdPipelineBarrier.txt[] -- [open,refpage='VkDependencyFlagBits',desc='Bitmask specifying how execution and memory dependencies are formed',type='enums'] -- Bits which can: be set in vkCmdPipelineBarrier::pname:dependencyFlags, specifying how execution and memory dependencies are formed, are: include::../api/enums/VkDependencyFlagBits.txt[] * ename:VK_DEPENDENCY_BY_REGION_BIT specifies that dependencies will be <>. ifdef::VK_KHX_multiview[] * ename:VK_DEPENDENCY_VIEW_LOCAL_BIT_KHX specifies that a <>. endif::VK_KHX_multiview[] ifdef::VK_KHX_device_group[] * ename:VK_DEPENDENCY_DEVICE_GROUP_BIT_KHX specifies that dependencies are <>. endif::VK_KHX_device_group[] -- [[synchronization-pipeline-barriers-subpass-self-dependencies]] === Subpass Self-dependency If fname:vkCmdPipelineBarrier is called inside a render pass instance, the following restrictions apply. For a given subpass to allow a pipeline barrier, the render pass must: declare a _self-dependency_ from that subpass to itself. That is, there must: exist a sname:VkSubpassDependency in the subpass dependency list for the render pass with pname:srcSubpass and pname:dstSubpass equal to that subpass index. More than one self-dependency can: be declared for each subpass. Self-dependencies must: only include pipeline stage bits that are graphics stages. Self-dependencies must: not have any earlier pipeline stages depend on any later pipeline stages (according to the order of <>), unless all of the stages are <>. If the source and destination stage masks both include framebuffer-space stages, then pname:dependencyFlags must: include ename:VK_DEPENDENCY_BY_REGION_BIT. ifdef::VK_KHX_multiview[] If the subpass has more than one view, then pname:dependencyFlags must: include ename:VK_DEPENDENCY_VIEW_LOCAL_BIT_KHX. endif::VK_KHX_multiview[] A fname:vkCmdPipelineBarrier command inside a render pass instance must: be a _subset_ of one of the self-dependencies of the subpass it is used in, meaning that the stage masks and access masks must: each include only a subset of the bits of the corresponding mask in that self-dependency. If the self-dependency has ename:VK_DEPENDENCY_BY_REGION_BIT ifdef::VK_KHX_multiview[] or ename:VK_DEPENDENCY_VIEW_LOCAL_BIT_KHX endif::VK_KHX_multiview[] set, then so must: the pipeline barrier. Pipeline barriers within a render pass instance can: only be types sname:VkMemoryBarrier or sname:VkImageMemoryBarrier. If a sname:VkImageMemoryBarrier is used, the image and image subresource range specified in the barrier must: be a subset of one of the image views used by the framebuffer in the current subpass. Additionally, pname:oldLayout must: be equal to pname:newLayout, and both the pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex must: be ename:VK_QUEUE_FAMILY_IGNORED. [[synchronization-memory-barriers]] == Memory Barriers _Memory barriers_ are used to explicitly control access to buffer and image subresource ranges. Memory barriers are used to <>, <>, and define <>. They explicitly define the <> and buffer and image subresource ranges that are included in the <> of a memory dependency that is created by a synchronization command that includes them. [[synchronization-global-memory-barriers]] === Global Memory Barriers Global memory barriers apply to memory accesses involving all memory objects that exist at the time of its execution. [open,refpage='VkMemoryBarrier',desc='Structure specifying a global memory barrier',type='structs'] -- The sname:VkMemoryBarrier structure is defined as: include::../api/structs/VkMemoryBarrier.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:srcAccessMask is a bitmask of elink:VkAccessFlagBits specifying a <>. * pname:dstAccessMask is a bitmask of elink:VkAccessFlagBits specifying a <>. The first <> is limited to access types in the <> specified by pname:srcAccessMask. The second <> is limited to access types in the <> specified by pname:dstAccessMask. include::../validity/structs/VkMemoryBarrier.txt[] -- [[synchronization-buffer-memory-barriers]] === Buffer Memory Barriers Buffer memory barriers only apply to memory accesses involving a specific buffer range. That is, a memory dependency formed from an buffer memory barrier is <> to access via the specified buffer range. Buffer memory barriers can: also be used to define a <> for the specified buffer range. [open,refpage='VkBufferMemoryBarrier',desc='Structure specifying a buffer memory barrier',type='structs'] -- The sname:VkBufferMemoryBarrier structure is defined as: include::../api/structs/VkBufferMemoryBarrier.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:srcAccessMask is a bitmask of elink:VkAccessFlagBits specifying a <>. * pname:dstAccessMask is a bitmask of elink:VkAccessFlagBits specifying a <>. * pname:srcQueueFamilyIndex is the source queue family for a <>. * pname:dstQueueFamilyIndex is the destination queue family for a <>. * pname:buffer is a handle to the buffer whose backing memory is affected by the barrier. * pname:offset is an offset in bytes into the backing memory for pname:buffer; this is relative to the base offset as bound to the buffer (see flink:vkBindBufferMemory). * pname:size is a size in bytes of the affected area of backing memory for pname:buffer, or ename:VK_WHOLE_SIZE to use the range from pname:offset to the end of the buffer. The first <> is limited to access to memory through the specified buffer range, via access types in the <> specified by pname:srcAccessMask. If pname:srcAccessMask includes ename:VK_ACCESS_HOST_WRITE_BIT, memory writes performed by that access type are also made visible, as that access type is not performed through a resource. The second <> is limited to access to memory through the specified buffer range, via access types in the <>. specified by pname:dstAccessMask. If pname:dstAccessMask includes ename:VK_ACCESS_HOST_WRITE_BIT or ename:VK_ACCESS_HOST_READ_BIT, available memory writes are also made visible to accesses of those types, as those access types are not performed through a resource. If pname:srcQueueFamilyIndex is not equal to pname:dstQueueFamilyIndex, and pname:srcQueueFamilyIndex is equal to the current queue family, then the memory barrier defines a <> for the specified buffer range, and the second access scope includes no access, as if pname:dstAccessMask was `0`. If pname:dstQueueFamilyIndex is not equal to pname:srcQueueFamilyIndex, and pname:dstQueueFamilyIndex is equal to the current queue family, then the memory barrier defines a <> for the specified buffer range, and the first access scope includes no access, as if pname:srcAccessMask was `0`. .Valid Usage **** * [[VUID-VkBufferMemoryBarrier-offset-01187]] pname:offset must: be less than the size of pname:buffer * [[VUID-VkBufferMemoryBarrier-size-01188]] If pname:size is not equal to ename:VK_WHOLE_SIZE, pname:size must: be greater than `0` * [[VUID-VkBufferMemoryBarrier-size-01189]] If pname:size is not equal to ename:VK_WHOLE_SIZE, pname:size must: be less than or equal to than the size of pname:buffer minus pname:offset ifndef::VK_KHX_external_memory[] * [[VUID-VkBufferMemoryBarrier-buffer-01190]] If pname:buffer was created with a sharing mode of ename:VK_SHARING_MODE_CONCURRENT, pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex must: both be ename:VK_QUEUE_FAMILY_IGNORED endif::VK_KHX_external_memory[] ifdef::VK_KHX_external_memory[] * [[VUID-VkBufferMemoryBarrier-buffer-01191]] If pname:buffer was created with a sharing mode of ename:VK_SHARING_MODE_CONCURRENT, at least one of pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex must: be ename:VK_QUEUE_FAMILY_IGNORED * [[VUID-VkBufferMemoryBarrier-buffer-01380]] If pname:buffer was created with a sharing mode of ename:VK_SHARING_MODE_CONCURRENT, and one of pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex is ename:VK_QUEUE_FAMILY_IGNORED, the other must: be ename:VK_QUEUE_FAMILY_IGNORED or ename:VK_QUEUE_FAMILY_EXTERNAL_KHX endif::VK_KHX_external_memory[] ifndef::VK_KHX_external_memory[] * [[VUID-VkBufferMemoryBarrier-buffer-01192]] If pname:buffer was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE, pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex must: either both be ename:VK_QUEUE_FAMILY_IGNORED, or both be a valid queue family (see <>) endif::VK_KHX_external_memory[] ifdef::VK_KHX_external_memory[] * [[VUID-VkBufferMemoryBarrier-buffer-01193]] If pname:buffer was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE and pname:srcQueueFamilyIndex is ename:VK_QUEUE_FAMILY_IGNORED, pname:dstQueueFamilyIndex must: also be ename:VK_QUEUE_FAMILY_IGNORED * [[VUID-VkBufferMemoryBarrier-buffer-01194]] If pname:buffer was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE and pname:srcQueueFamilyIndex is not ename:VK_QUEUE_FAMILY_IGNORED, it must: be a valid queue family or ename:VK_QUEUE_FAMILY_EXTERNAL_KHX (see <>) * [[VUID-VkBufferMemoryBarrier-buffer-01195]] If pname:buffer was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE and pname:dstQueueFamilyIndex is not ename:VK_QUEUE_FAMILY_IGNORED, it must: be a valid queue family or ename:VK_QUEUE_FAMILY_EXTERNAL_KHX (see <>) endif::VK_KHX_external_memory[] * [[VUID-VkBufferMemoryBarrier-buffer-01196]] If pname:buffer was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE, and pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex are not ename:VK_QUEUE_FAMILY_IGNORED, at least one of them must: be the same as the family of the queue that will execute this barrier **** include::../validity/structs/VkBufferMemoryBarrier.txt[] -- [[synchronization-image-memory-barriers]] === Image Memory Barriers Image memory barriers only apply to memory accesses involving a specific image subresource range. That is, a memory dependency formed from an image memory barrier is <> to access via the specified image subresource range. Image memory barriers can: also be used to define <> or a <> for the specified image subresource range. [open,refpage='VkImageMemoryBarrier',desc='Structure specifying the parameters of an image memory barrier',type='structs'] -- The sname:VkImageMemoryBarrier structure is defined as: include::../api/structs/VkImageMemoryBarrier.txt[] * pname:sType is the type of this structure. * pname:pNext is `NULL` or a pointer to an extension-specific structure. * pname:srcAccessMask is a bitmask of elink:VkAccessFlagBits specifying a <>. * pname:dstAccessMask is a bitmask of elink:VkAccessFlagBits specifying a <>. * pname:oldLayout is the old layout in an <>. * pname:newLayout is the new layout in an <>. * pname:srcQueueFamilyIndex is the source queue family for a <>. * pname:dstQueueFamilyIndex is the destination queue family for a <>. * pname:image is a handle to the image affected by this barrier. * pname:subresourceRange describes the <> within pname:image that is affected by this barrier. The first <> is limited to access to memory through the specified image subresource range, via access types in the <> specified by pname:srcAccessMask. If pname:srcAccessMask includes ename:VK_ACCESS_HOST_WRITE_BIT, memory writes performed by that access type are also made visible, as that access type is not performed through a resource. The second <> is limited to access to memory through the specified image subresource range, via access types in the <> specified by pname:dstAccessMask. If pname:dstAccessMask includes ename:VK_ACCESS_HOST_WRITE_BIT or ename:VK_ACCESS_HOST_READ_BIT, available memory writes are also made visible to accesses of those types, as those access types are not performed through a resource. If pname:srcQueueFamilyIndex is not equal to pname:dstQueueFamilyIndex, and pname:srcQueueFamilyIndex is equal to the current queue family, then the memory barrier defines a <> for the specified image subresource range, and the second access scope includes no access, as if pname:dstAccessMask was `0`. If pname:dstQueueFamilyIndex is not equal to pname:srcQueueFamilyIndex, and pname:dstQueueFamilyIndex is equal to the current queue family, then the memory barrier defines a <> for the specified image subresource range, and the first access scope includes no access, as if pname:srcAccessMask was `0`. If pname:oldLayout is not equal to pname:newLayout, then the memory barrier defines an <> for the specified image subresource range. [[synchronization-image-barrier-layout-transition-order]] Layout transitions that are performed via image memory barriers execute in their entirety in <>, relative to other image layout transitions submitted to the same queue, including those performed by <>. In effect there is an implicit execution dependency from each such layout transition to all layout transitions previously submitted to the same queue. .Valid Usage **** * [[VUID-VkImageMemoryBarrier-oldLayout-01197]] pname:oldLayout must: be ename:VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image subresources affected by the barrier * [[VUID-VkImageMemoryBarrier-newLayout-01198]] pname:newLayout must: not be ename:VK_IMAGE_LAYOUT_UNDEFINED or ename:VK_IMAGE_LAYOUT_PREINITIALIZED ifndef::VK_KHX_external_memory[] * [[VUID-VkImageMemoryBarrier-image-01199]] If pname:image was created with a sharing mode of ename:VK_SHARING_MODE_CONCURRENT, pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex must: both be ename:VK_QUEUE_FAMILY_IGNORED endif::VK_KHX_external_memory[] ifdef::VK_KHX_external_memory[] * [[VUID-VkImageMemoryBarrier-image-01381]] If pname:image was created with a sharing mode of ename:VK_SHARING_MODE_CONCURRENT, at least one of pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex must: be ename:VK_QUEUE_FAMILY_IGNORED * [[VUID-VkImageMemoryBarrier-image-01382]] If pname:image was created with a sharing mode of ename:VK_SHARING_MODE_CONCURRENT, and one of pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex is ename:VK_QUEUE_FAMILY_IGNORED, the other must: be ename:VK_QUEUE_FAMILY_IGNORED or ename:VK_QUEUE_FAMILY_EXTERNAL_KHX endif::VK_KHX_external_memory[] ifndef::VK_KHX_external_memory[] * [[VUID-VkImageMemoryBarrier-image-01200]] If pname:image was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE, pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex must: either both be ename:VK_QUEUE_FAMILY_IGNORED, or both be a valid queue family (see <>). endif::VK_KHX_external_memory[] ifdef::VK_KHX_external_memory[] * [[VUID-VkImageMemoryBarrier-image-01201]] If pname:image was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE and pname:srcQueueFamilyIndex is ename:VK_QUEUE_FAMILY_IGNORED, pname:dstQueueFamilyIndex must: also be ename:VK_QUEUE_FAMILY_IGNORED. * [[VUID-VkImageMemoryBarrier-image-01202]] If pname:image was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE and pname:srcQueueFamilyIndex is not ename:VK_QUEUE_FAMILY_IGNORED, it must: be a valid queue family or ename:VK_QUEUE_FAMILY_EXTERNAL_KHX (see <>). * [[VUID-VkImageMemoryBarrier-image-01203]] If pname:image was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE and pname:dstQueueFamilyIndex is not ename:VK_QUEUE_FAMILY_IGNORED, it must: be a valid queue family or ename:VK_QUEUE_FAMILY_EXTERNAL_KHX (see <>). endif::VK_KHX_external_memory[] * [[VUID-VkImageMemoryBarrier-image-01205]] If pname:image was created with a sharing mode of ename:VK_SHARING_MODE_EXCLUSIVE, and pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex are not ename:VK_QUEUE_FAMILY_IGNORED, at least one of them must: be the same as the family of the queue that will execute this barrier * [[VUID-VkImageMemoryBarrier-subresourceRange-01206]] pname:subresourceRange must: be a valid image subresource range for the image (see <>) * [[VUID-VkImageMemoryBarrier-image-01207]] If pname:image has a depth/stencil format with both depth and stencil components, then pname:aspectMask member of pname:subresourceRange must: include both ename:VK_IMAGE_ASPECT_DEPTH_BIT and ename:VK_IMAGE_ASPECT_STENCIL_BIT * [[VUID-VkImageMemoryBarrier-oldLayout-01208]] If either pname:oldLayout or pname:newLayout is ename:VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then pname:image must: have been created with ename:VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT set * [[VUID-VkImageMemoryBarrier-oldLayout-01209]] If either pname:oldLayout or pname:newLayout is ename:VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL then pname:image must: have been created with ename:VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set * [[VUID-VkImageMemoryBarrier-oldLayout-01210]] If either pname:oldLayout or pname:newLayout is ename:VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then pname:image must: have been created with ename:VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set * [[VUID-VkImageMemoryBarrier-oldLayout-01211]] If either pname:oldLayout or pname:newLayout is ename:VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then pname:image must: have been created with ename:VK_IMAGE_USAGE_SAMPLED_BIT or ename:VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT set * [[VUID-VkImageMemoryBarrier-oldLayout-01212]] If either pname:oldLayout or pname:newLayout is ename:VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then pname:image must: have been created with ename:VK_IMAGE_USAGE_TRANSFER_SRC_BIT set * [[VUID-VkImageMemoryBarrier-oldLayout-01213]] If either pname:oldLayout or pname:newLayout is ename:VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then pname:image must: have been created with ename:VK_IMAGE_USAGE_TRANSFER_DST_BIT set **** include::../validity/structs/VkImageMemoryBarrier.txt[] -- [[synchronization-queue-transfers]] === Queue Family Ownership Transfer Resources created with a elink:VkSharingMode of ename:VK_SHARING_MODE_EXCLUSIVE must: have their ownership explicitly transferred from one queue family to another in order to access their content in a well-defined manner on a queue in a different queue family. ifdef::VK_KHX_external_memory[] Resources shared with external APIs or instances using external memory must: also explicitly manage ownership transfers between local and external queues (or equivalent constructs in external APIs) regardless of the elink:VkSharingMode specified when creating them. The special queue family index ename:VK_QUEUE_FAMILY_EXTERNAL_KHX represents any queue external to the resource's current Vulkan instance. endif::VK_KHX_external_memory[] If memory dependencies are correctly expressed between uses of such a resource between two queues in different families, but no ownership transfer is defined, the contents of that resource are undefined for any read accesses performed by the second queue family. .Note [NOTE] ==== If an application does not need the contents of a resource to remain valid when transferring from one queue family to another, then the ownership transfer should: be skipped. ==== A queue family ownership transfer consists of two distinct parts: . Release exclusive ownership from the source queue family . Acquire exclusive ownership for the destination queue family An application must: ensure that these operations occur in the correct order by defining an execution dependency between them, e.g. using a semaphore. [[synchronization-queue-transfers-release]] A _release operation_ is used to release exclusive ownership of a range of a buffer or image subresource range. A release operation is defined by executing a <> (for a buffer range) or an <> (for an image subresource range), on a queue from the source queue family. The pname:srcQueueFamilyIndex parameter of the barrier must: be set to the source queue family index, and the pname:dstQueueFamilyIndex parameter to the destination queue family index. pname:dstStageMask is ignored for such a barrier, such that no visibility operation is executed - the value of this mask does not affect the validity of the barrier. The release operation happens-after the availability operation. [[synchronization-queue-transfers-acquire]] An _acquire operation_ is used to acquire exclusive ownership of a range of a buffer or image subresource range. An acquire operation is defined by executing a <> (for a buffer range) or an <> (for an image subresource range), on a queue from the destination queue family. The pname:srcQueueFamilyIndex parameter of the barrier must: be set to the source queue family index, and the pname:dstQueueFamilyIndex parameter to the destination queue family index. pname:srcStageMask is ignored for such a barrier, such that no availability operation is executed - the value of this mask does not affect the validity of the barrier. The acquire operation happens-before the visibility operation. .Note [NOTE] ==== Whilst it is not invalid to provide destination or source access masks for memory barriers used for release or acquire operations, respectively, they have no practical effect. Access after a release operation has undefined results, and so visibility for those accesses has no practical effect. Similarly, write access before an acquire operation will produce undefined results for future access, so availability of those writes has no practical use. In an earlier version of the specification, these were required to match on both sides - but this was subsequently relaxed. These masks should: be set to 0. ==== If the transfer is via an image memory barrier, and an <> is desired, then the values of pname:oldLayout and pname:newLayout in the release memory barrier must: be equal to values of pname:oldLayout and pname:newLayout in the acquire memory barrier. Although the image layout transition is submitted twice, it will only be executed once. A layout transition specified in this way happens-after the release operation and happens-before the acquire operation. If the values of pname:srcQueueFamilyIndex and pname:dstQueueFamilyIndex are equal, no ownership transfer is performed, and the barrier operates as if they were both set to ename:VK_QUEUE_FAMILY_IGNORED. Queue family ownership transfers may: perform read and write accesses on all memory bound to the image subresource or buffer range, so applications must: ensure that all memory writes have been made <> before a queue family ownership transfer is executed. Available memory is automatically made visible to queue family release and acquire operations, and writes performed by those operations are automatically made available. Once a queue family has acquired ownership of a buffer range or image subresource range of an ename:VK_SHARING_MODE_EXCLUSIVE resource, its contents are undefined to other queue families unless ownership is transferred. The contents of any portion of another resource which aliases memory that is bound to the transferred buffer or image subresource range are undefined after a release or acquire operation. [[synchronization-wait-idle]] == Wait Idle Operations [open,refpage='vkQueueWaitIdle',desc='Wait for a queue to become idle',type='protos'] -- To wait on the host for the completion of outstanding queue operations for a given queue, call: include::../api/protos/vkQueueWaitIdle.txt[] * pname:queue is the queue on which to wait. fname:vkQueueWaitIdle is equivalent to submitting a fence to a queue and waiting with an infinite timeout for that fence to signal. include::../validity/protos/vkQueueWaitIdle.txt[] -- [open,refpage='vkDeviceWaitIdle',desc='Wait for a device to become idle',type='protos'] -- To wait on the host for the completion of outstanding queue operations for all queues on a given logical device, call: include::../api/protos/vkDeviceWaitIdle.txt[] * pname:device is the logical device to idle. fname:vkDeviceWaitIdle is equivalent to calling fname:vkQueueWaitIdle for all queues owned by pname:device. include::../validity/protos/vkDeviceWaitIdle.txt[] -- [[synchronization-submission-host-writes]] == Host Write Ordering Guarantees When batches of command buffers are submitted to a queue via flink:vkQueueSubmit, it defines a memory dependency with prior host operations, and execution of command buffers submitted to the queue. The first <> is defined by the host execution model, but includes execution of flink:vkQueueSubmit on the host and anything that happened-before it. The second <> includes every command submitted in the same <> command, and all future submissions to the same queue. The first <> includes all host writes to mappable device memory that are either coherent, or have been flushed with flink:vkFlushMappedMemoryRanges. The second <> includes all memory access performed by the device. ifdef::VK_KHX_device_group[] [[synchronization-device-group]] == Synchronization and Multiple Physical Devices If a logical device includes more than one physical device, then fences, semaphores, and events all still have a single instance of the signaled state. A fence becomes signaled when all physical devices complete the necessary queue operations. Semaphore wait and signal operations all include a device index that is the sole physical device that performs the operation. These indices are provided in the slink:VkDeviceGroupSubmitInfoKHX and slink:VkDeviceGroupBindSparseInfoKHX structures. Semaphores are not exclusively owned by any physical device. For example, a semaphore can be signaled by one physical device and then waited on by a different physical device. An event can: only be waited on by the same physical device that signaled it (or the host). endif::VK_KHX_device_group[]