The following standard allows for the implementation of a standard API for NFTs within smart contracts. This standard provides basic functionality to track and transfer NFTs.
We considered use cases of NFTs being owned and transacted by individuals as well as consignment to third party brokers/wallets/auctioneers ("operators"). NFTs can represent ownership over digital or physical assets. We considered a diverse universe of assets, and we know you will dream up many more:
A standard interface allows wallet/broker/auction applications to work with any NFT on Ethereum. We provide for simple ERC-721 smart contracts as well as contracts that track an *arbitrarily large* number of NFTs. Additional applications are discussed below.
This standard is inspired by the ERC-20 token standard and builds on two years of experience since EIP-20 was created. EIP-20 is insufficient for tracking NFTs because each asset is distinct (non-fungible) whereas each of a quantity of tokens is identical (fungible).
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
The **metadata extension** is OPTIONAL for ERC-721 smart contracts (see "caveats", below). This allows your smart contract to be interrogated for its name and for details about the assets which your NFTs represent.
"description": "A URI pointing to a resource with mime type image/* representing the asset to which this NFT represents. Consider making any images at a width between 320 and 1080 pixels and aspect ratio between 1.91:1 and 4:5 inclusive.",
The **enumeration extension** is OPTIONAL for ERC-721 smart contracts (see "caveats", below). This allows your contract to publish its full list of NFTs and make them discoverable.
The 0.4.20 Solidity interface grammar is not expressive enough to document the ERC-721 standard. A contract which complies with ERC-721 MUST also abide by the following:
- Solidity issue #3412: The above interfaces include explicit mutability guarantees for each function. Mutability guarantees are, in order weak to strong: `payable`, implicit nonpayable, `view`, and `pure`. Your implementation MUST meet the mutability guarantee in this interface and you MAY meet a stronger guarantee. For example, a `payable` function in this interface may be implemented as nonpayble (no state mutability specified) in your contract. We expect a later Solidity release will allow your stricter contract to inherit from this interface, but a workaround for version 0.4.20 is that you can edit this interface to add stricter mutability before inheriting from your contract.
- Solidity issue #3419: A contract that implements `ERC721Metadata` or `ERC721Enumerable` SHALL also implement `ERC721`. ERC-721 implements the requirements of interface ERC-165.
- Solidity issue #2330: If a function is shown in this specification as `external` then a contract will be compliant if it uses `public` visibility. As a workaround for version 0.4.20, you can edit this interface to switch to `public` before inheriting from your contract.
- Solidity issues #3494, #3544: Use of `this.*.selector` is marked as a warning by Solidity, a future version of Solidity will not mark this as an error.
*If a newer version of Solidity allows the caveats to be expressed in code, then this EIP MAY be updated and the caveats removed, such will be equivalent to the original specification.*
There are many proposed uses of Ethereum smart contracts that depend on tracking distinguishable assets. Examples of existing or planned NFTs are LAND in Decentraland, the eponymous punks in CryptoPunks, and in-game items using systems like DMarket or EnjinCoin. Future uses include tracking real-world assets, like real-estate (as envisioned by companies like Ubitquity or Propy. It is critical in each of these cases that these items are not "lumped together" as numbers in a ledger, but instead each asset must have its ownership individually and atomically tracked. Regardless of the nature of these assets, the ecosystem will be stronger if we have a standardized interface that allows for cross-functional asset management and sales platforms.
"NFT" was satisfactory to nearly everyone surveyed and is widely applicable to a broad universe of distinguishable digital assets. We recognize that "deed" is very descriptive for certain applications of this standard (notably, physical property).
Every NFT is identified by a unique `uint265` ID inside the ERC-721 smart contract. This identifying number SHALL NOT change for the life of the contract. The pair `(contract address, uint265 tokenId)` will then be a globally unique and fully-qualified identifier for a specific asset on an Ethereum chain. While some ERC-721 smart contracts may find it convenient to start with ID 0 and simply increment by one for each new NFT, callers SHALL NOT assume that ID numbers have any specific pattern to them, and MUST treat the ID as a "black box". Also note that a NFTs MAY become invalid (be destroyed). Please see the enumerations functions for a supported enumeration interface.
ERC-721 standardizes a safe transfer function `safeTransferFrom` (overloaded with and without a `bytes` parameter) and an unsafe function `transferFrom`. Transfers may be initiated by:
Additionally, an authorized operator may set the approved address for an NFT. This provides a powerful set of tools for wallet, broker and auction applications to quickly use a *large* number of NFTs.
The transfer and accept functions' documentation only specify conditions when the transaction MUST throw. Your implementation MAY also throw in other situations. This allows implementations to achieve interesting results:
- **Disallow unsafe transfers** — `transferFrom` throws unless `_to` equals `msg.sender` or `countOf(_to)` is non-zero or was non-zero previously (because such cases are safe)
- **Charge a fee to both parties of a transaction** — require payment when calling `approve` with a non-zero `_approved` if it was previously the zero address, refund payment if calling `approve` with the zero address if it was previously a non-zero address, require payment when calling any transfer function, require transfer parameter `_to` to equal `msg.sender`, require transfer parameter `_to` to be the approved address for the NFT
- **Read only NFT registry** — always throw from `unsafeTransfer`, `transferFrom`, `approve` and `setApprovalForAll`
Failed transactions will throw, a best practice identified in ERC-223, ERC-677, ERC-827 and OpenZeppelin's implementation of SafeERC20.sol. ERC-20 defined an `allowance` feature, this caused a problem when called and then later modified to a different amount, as on OpenZeppelin issue \#438. In ERC-721, there is no allowance because every NFT is unique, the quantity is none or one. Therefore we receive the benefits of ERC-20's original design without problems that have been later discovered.
Creating of NFTs ("minting") and destruction NFTs ("burning") is not included in the specification. Your contract may implement these by other means. Please see the `event` documentation for your responsibilities when creating or destroying NFTs.
*Alternatives considered: only allow two-step ERC-20 style transaction, require that transfer functions never throw, require all functions to return a boolean indicating the success of the operation.*
A future EIP may create a global registry of interfaces for contracts. We strongly support such an EIP and it would allow your ERC-721 implementation to implement `ERC721Enumerable`, `ERC721Metadata`, or other interfaces by delegating to a separate contract.
This specification contemplates implementations that manage a few and *arbitrarily large* numbers of NFTs. If your application is able to grow then avoid using for/while loops in your code (see CryptoKitties bounty issue \#4). These indicate your contract may be unable to scale and gas costs will rise over time without bound.
We have deployed a contract, XXXXERC721, to Testnet which instantiates and tracks 340282366920938463463374607431768211456 different deeds (2^128). That's enough to assign every IPV6 address to an Ethereum account owner, or to track ownership of nanobots a few micron in size and in aggregate totalling half the size of Earth. You can query it from the blockchain. And every function takes less gas than querying the ENS.
It may be interesting to consider a use case where NFTs are not enumerable, such as a private registry of property ownership, or a partially-private registry. However, privacy cannot be attained because an attacker can simply (!) call `ownerOf` for every possible `tokenId`.
We have required `name` and `symbol` functions in the metadata extension. Every token EIP and draft we reviewed (ERC-20, ERC-223, ERC-677, ERC-777, ERC-827) included these functions.
We remind implementation authors that the empty string is a valid response to `name` and `symbol` if you protest to the usage of this mechanism. We also remind everyone that any smart contract can use the same name and symbol as *your* contract. How a client may determine which ERC-721 smart contracts are well-known (canonical) is outside the scope of this standard.
A mechanism is provided to associate NFTs with URIs. We expect that many implementations will take advantage of this to provide metadata for each NFT. The image size recommendation is taken from Instagram, they probably know much about image usability. The URI MAY be mutable (i.e. it changes from time to time). We considered an NFT representing ownership of a house, in this case metadata about the house (image, occupants, etc.) can naturally change.
Metadata is returned as a string value. Currently this is only usable as calling from `web3`, not from other contracts. This is acceptable because we have not considered a use case where an on-blockchain application would query such information.
*Alternatives considered: put all metadata for each asset on the blockchain (too expensive), use URL templates to query metadata parts (URL templates do not work with all URL schemes, especially P2P URLs), multiaddr network address (not mature enough)*
A significant amount of discussion occurred on the original ERC-721 issue, additionally we held a first live meeting on Gitter that had good representation and well advertised (on Reddit, in the Gitter #ERC channel, and the original ERC-721 issue). Thank you to the participants:
We have been very inclusive in this process and invite anyone with questions or contributions into our discussion. However, this standard is written only to support the identified use cases which are listed herein.
We have adopted `balanceOf`, `totalSupply`, `name` and `symbol` semantics from the ERC-20 specification. An implementation may also include a function `decimals` that returns `uint8(0)` if its goal is to be more compatible with ERC-20 while supporting this standard. However, we find it contrived to require all ERC-721 implementations to support the `decimals` function.
- CryptoKitties -- Compatible with an earlier version of this standard.
- CryptoPunks -- Partially ERC-20 compatible, but not easily generalizable because it includes auction functionality directly in the contract and uses function names that explicitly refer to the assets as "punks".
- Auctionhouse Asset Interface -- The author needed a generic interface for the Auctionhouse ÐApp (currently ice-boxed). His "Asset" contract is very simple, but is missing ERC-20 compatibility, `approve()` functionality, and metadata. This effort is referenced in the discussion for EIP-173.
Note: "Limited edition, collectible tokens" like Curio Cards and Rare Pepe are *not* distinguishable assets. They're actually a collection of individual fungible tokens, each of which is tracked by its own smart contract with its own total supply (which may be `1` in extreme cases).
The `onERC721Received` function specifically works around old deployed contracts which may inadvertently return 1 (`true`) in certain circumstances even if they don't implement a function (see Solidity DelegateCallReturnValue bug). By returning and checking for a magic value, we are able to distinguish actual affirmative responses versus these vacuous `true`s.
Test cases for an implementation are mandatory for EIPs that are affecting consensus changes. Other EIPs can choose to include links to test cases if applicable.