ProgPoW is a proof-of-work algorithm designed to close the efficency gap available to specialized ASICs. It utilizes almost all parts of commodity hardware (GPUs), and comes pre-tuned for the most common hardware utilized in the Ethereum network.
Ever since the first bitcoin mining ASIC was released, many new Proof of Work algorithms have been created with the intention of being “ASIC-resistant”. The goal of “ASIC-resistance” is to resist the centralization of PoW mining power such that these coins couldn’t be so easily manipulated by a few players.
This document presents an overview of the algorithm and examines what it means to be “ASIC-resistant.” Next, we compare existing PoW designs by analyzing how each algorithm executes in hardware. Finally, we present the detailed implementation by walking through the code.
The design goal of ProgPoW is to have the algorithm’s requirements match what is available on commodity GPUs: If the algorithm were to be implemented on a custom ASIC there should be little opportunity for efficiency gains compared to a commodity GPU.
The random sequence changes every `PROGPOW_PERIOD` (50 blocks or about 12.5 minutes). When mining source code is generated for the random sequence and compiled on the host CPU. The GPU will execute the compiled code where what math to perform and what mix state to use are already resolved.
While a custom ASIC to implement this algorithm is still possible, the efficiency gains available are minimal. The majority of a commodity GPU is required to support the above elements. The only optimizations available are:
* Remove the graphics pipeline (displays, geometry engines, texturing, etc)
* Remove floating point math
* A few ISA tweaks, like instructions that exactly match the merge() function
These would result in minimal, roughly 1.1-1.2x, efficiency gains. This is much less than the 2x for Ethash or 50x for Cryptonight.
### Rationale for PoW on Commodity Hardware
With the growth of large mining pools, the control of hashing power has been delegated to the top few pools to provide a steadier economic return for small miners. While some have made the argument that large centralized pools defeats the purpose of “ASIC resistance,” it’s important to note that ASIC based coins are even more centralized for several reasons.
1. No natural distribution: There isn’t an economic purpose for ultra-specialized hardware outside of mining and thus no reason for most people to have it.
2. No reserve group: Thus, there’s no reserve pool of hardware or reserve pool of interested parties to jump in when coin price is volatile and attractive for manipulation.
3. High barrier to entry: Initial miners are those rich enough to invest capital and ecological resources on the unknown experiment a new coin may be. Thus, initial coin distribution through mining will be very limited causing centralized economic bias.
4. Delegated centralization vs implementation centralization: While pool centralization is delegated, hardware monoculture is not: only the limiter buyers of this hardware can participate so there isn’t even the possibility of divesting control on short notice.
5. No obvious decentralization of control even with decentralized mining: Once large custom ASIC makers get into the game, designing back-doored hardware is trivial. ASIC makers have no incentive to be transparent or fair in market participation.
While the goal of “ASIC resistance” is valuable, the entire concept of “ASIC resistance” is a bit of a fallacy. CPUs and GPUs are themselves ASICs. Any algorithm that can run on a commodity ASIC (a CPU or GPU) by definition can have a customized ASIC created for it with slightly less functionality. Some algorithms are intentionally made to be “ASIC friendly” - where an ASIC implementation is drastically more efficient than the same algorithm running on general purpose hardware. The protection that this offers when the coin is unknown also makes it an attractive target for a dedicate mining ASIC company as soon as it becomes useful.
Therefore, ASIC resistance is: the efficiency difference of specilized hardware versus hardware that has a wider adoption and applicability. A smaller efficiency difference between custom vs general hardware mean higher resistance and a better algorithm. This efficiency difference is the proper metric to use when comparing the quality of PoW algorithms. Efficiency could mean absolute performance, performance per watt, or performance per dollar - they are all highly correlated. If a single entity creates and controls an ASIC that is drastically more efficient, they can gain 51% of the network hashrate and possibly stage an attack.
To process a single op on a CPU or GPU requires fetching and decoding an instruction, reading data from a register file, executing the instruction, and then writing the result back to a register file. This takes significant time and power.
A single op implemented in an ASIC takes a handful of transistors and wires. This means every individual op takes negligible power, area, or time. A hashing core is built by laying out the sequence of required ops.
The hashing core can execute the required sequence of ops in much less time, and using less power or area, than doing the same sequence on a CPU or GPU. A bitcoin ASIC consists of a number of identical hashing cores and some minimal off-chip communication.
Scrypt and NeoScrypt are similar to SHA in the arithmetic and bitwise operations used. Unfortunately, popular coins such as Litecoin only use a scratchpad size between 32kb and 128kb for their PoW mining algorithm. This scratch pad is small enough to trivially fit on an ASIC next to the math core. The implementation of the math core would be very similar to SHA, with similar efficiency gains.
X11 (and similar X##) require an ASIC that has 11 unique hashing cores pipelined in a fixed sequence. Each individual hashing core would have similar efficiency to an individual SHA core, so the overall design will have the same efficiency gains.
X16R requires the multiple hashing cores to interact through a simple sequencing state machine. Each individual core will have similar efficiency gains and the sequencing logic will take minimal power, area, or time.
The Baikal BK-X is an existing ASIC with multiple hashing cores and a programmable sequencer. It has been upgraded to enable new algorithms that sequence the hashes in different orders.
The ~150mb of state is large but possible on an ASIC. The binning, sorting, and comparing of bit strings could be implemented on an ASIC at extremely high speed.
The amount of state required on-chip is not clear as there are Time/Memory Tradeoff attacks. A specialized graph traversal core would have similar efficiency gains to a SHA compute core.
#### CryptoNight
* Potential ASIC efficiency gain ~ 50X
Compared to Scrypt, CryptoNight does much less compute and requires a full 2mb of scratch pad (there is no known Time/Memory Tradeoff attack). The large scratch pad will dominate the ASIC implementation and limit the number of hashing cores, limiting the absolute performance of the ASIC. An ASIC will consist almost entirely of just on-die SRAM.
#### Ethash
* Potential ASIC efficiency gain ~ 2X
Ethash requires external memory due to the large size of the DAG. However that is all that it requires - there is minimal compute that is done on the result loaded from memory. As a result a custom ASIC could remove most of the complexity, and power, of a GPU and be just a memory interface connected to a small compute engine.
## Specification
The DAG is generated exactly as in Ethash. All the parameters (ephoch length, DAG size, etc) are unchanged. See the original [Ethash](https://github.com/ethereum/wiki/wiki/Ethash) spec for details on generating the DAG.
*`PROGPOW_PERIOD`: Number of blocks before changing the random program; default is `50`.
*`PROGPOW_LANES`: The number of parallel lanes that coordinate to calculate a single hash instance; default is `16`.
*`PROGPOW_REGS`: The register file usage size; default is `32`.
*`PROGPOW_DAG_LOADS`: Number of uint32 loads from the DAG per lane; default is `4`;
*`PROGPOW_CACHE_BYTES`: The size of the cache; default is `16 x 1024`.
*`PROGPOW_CNT_DAG`: The number of DAG accesses, defined as the outer loop of the algorithm; default is `64` (same as Ethash).
*`PROGPOW_CNT_CACHE`: The number of cache accesses per loop; default is `12`.
*`PROGPOW_CNT_MATH`: The number of math operations per loop; default is `20`.
The random program changes every `PROGPOW_PERIOD` blocks (default `50`, roughly 12.5 minutes) to ensure the hardware executing the algorithm is fully programmable. If the program only changed every DAG epoch (roughly 5 days) certain miners could have time to develop hand-optimized versions of the random sequence, giving them an undue advantage.
All numerics are computed using unsinged 32 bit integers. Any overflows are trimmed off before proceeding to the next computation. Languages that use numerics not fixed to bit lenghts (such as Python and JavaScript) or that only use signed integers (such as Java) will need to keep their languages' quirks in mind. The extensive use of 32 bit data values aligns with modern GPUs internal data architectures.
ProgPoW uses a 32-bit variant of **FNV1a** for merging data. The existing Ethash uses a similar vaiant of FNV1 for merging, but FNV1a provides better distribution properties.
Test vectors can be found [in the test vectors file](../assets/eip-1057/test-vectors.md#fnv1a).
ProgPow uses [KISS99](https://en.wikipedia.org/wiki/KISS_(algorithm)) for random number generation. This is the simplest (fewest instruction) random generator that passes the TestU01 statistical test suite. A more complex random number generator like Mersenne Twister can be efficiently implemented on a specialized ASIC, providing an opportunity for efficiency gains.
Test vectors can be found [in the test vectors file](../assets/eip-1057/test-vectors.md#kiss99).
Like Ethash Keccak is used to seed the sequence per-nonce and to produce the final result. The keccak-f800 variant is used as the 32-bit word size matches the native word size of modern GPUs. The implementation is a variant of SHAKE with width=800, bitrate=576, capacity=224, output=256, and no padding. The result of keccak is treated as a 256-bit big-endian number - that is result byte 0 is the MSB of the value.
As with Ethash the input and output of the keccak function are fixed and relatively small. This means only a single "absorb" and "squeeze" phase are required. For a pseudo-code imenentation of the `keccak_f800_round` function see the `Round[b](A,RC)` function in the "Pseudo-code description of the permutations" section of the [official Keccak specs](https://keccak.team/keccak_specs_summary.html).
Test vectors can be found [in the test vectors file](../assets/eip-1057/test-vectors.md#keccak_f800_progpow).
The inner loop uses FNV and KISS99 to generate a random sequence from the `prog_seed`. This random sequence determines which mix state is accessed and what random math is performed.
Since the `prog_seed` changes only once per `PROGPOW_PERIOD` (50 blocks or about 12.5 minutes) it is expected that while mining `progPowLoop` will be evaluated on the CPU to generate source code for that period's sequence. The source code will be compiled on the CPU before running on the GPU.
The math operations chosen for the random math are ones that are easy to implement in CUDA and OpenCL, the two main programming languages for commodity GPUs. The [mul_hi](https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/mul_hi.html), [min](https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/integerMax.html), [clz](https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/clz.html), and [popcount](https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/popcount.html) functions match the corresponding OpenCL functions. ROTL32 matches the OpenCL [rotate](https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/rotate.html) function. ROTR32 is rotate right, which is equivalent to `rotate(i, 32-v)`.
Test vectors can be found [in the test vectors file](../assets/eip-1057/test-vectors.md#math).
* Lane `(loop % LANES)` is chosen as the leader for that loop iteration
* The leader's `mix[0]` value modulo the number of 256-byte DAG entries is is used to select where to read from the full DAG
* Each lane reads `DAG_LOADS` sequential words, using `(lane ^ loop) % LANES` as the starting offset within the entry.
* The random sequence of math and cache accesses is performed
* The DAG data read at the start of the loop is merged at the end of the loop
`prog_seed` and `loop` come from the outer loop, corresponding to the current program seed (which is block_number/PROGPOW_PERIOD) and the loop iteration number. `mix` is the state array, initially filled by `fill_mix`. `dag` is the bytes of the Ethash DAG grouped into 32 bit unsigned ints in litte-endian format. On little-endian architectures this is just a normal int32 pointer to the existing DAG.
`DAG_BYTES` is set to the number of bytes in the current DAG, which is generated identically to the existing Ethash algorithm.
Test vectors can be found [in the test vectors file](../assets/eip-1057/test-vectors.md#progPowLoop).
Since the GPU is almost fully utilized, there’s little opportunity for specialized ASICs to gain efficiency. Removing both the graphics pipeline and floating point math could provide up to 1.2x gains in efficiency, compared to the 2x gains possible in Ethash, and 50x gains possible for CryptoNight.
This algorithm is not backwards compatible with the existing Ethash, and will require a fork for adoption. Furthermore, the network hashrate will halve since twice as much memory is loaded per hash.
The reference ProgPoW mining implementation located at [ProgPOW](https://github.com/ifdefelse/ProgPOW) is a derivative of ethminer so retains the GPL license.
The ProgPoW algorithm and this specification are a new work. Copyright and related rights are waived via [CC0](https://creativecommons.org/publicdomain/zero/1.0/).
The reference ProgPoW mining implementation located at [ProgPOW](https://github.com/ifdefelse/ProgPOW) is a derivative of ethminer so retains the GPL license.