The current `21,000` gas intrinsic cost of a transaction makes sending ETH very costly, often times prohibitively costly for small amounts (tens of USD).
While broad changes to the gas price and first price auction are being considerted in other EIPs (like EIP-1559),
substantially reducing the cost of sending ETH and enabling higher volumes of such transactions would be a net positive if done in a safe manner,
and without imposing negative externalities, as outlined below.
The growth of Ethereum's state size continues to raise concerns among members of the community.
However, an analysis of Ethereum accounts shows that their effect on stat size is negligible.
Looking at the first half of 2020, the number of accounts on the Ethereum chain had grown from 84,127,955 to 103,485,373 - an increase of 19,357,418. Since the *creation* of each new account adds 20 bytes to the chain state, these new accounts had added ~369 MB to the state.
At the same time, the chain had grown from ~117 GB to ~147 GB - an increase of 30 GB.
The creation of new accounts had therefore accounted for only a very small percentage (1.2%) of the chain’s growth.
Even under the very aggressive assumption that reducing the intrinsic cost of transactions from `21,000` to `7,000` gas would translate to x3 more new accounts being created, if this change was implemented on 1/1/2020, the state size would have only been 0.49% larger than it is today (see below)
While the sate-size remains an open issue which needs solving - reducing the intrinsic cost of transactions would hardly affect the rate at which the state-size grows, and would significantly improve the chain’s usability.
#### Enhancing Gas-Manipulation (gas-token)
Gas Token (https://gastoken.io/) is an Ethereum smart-contracts which leverages the storage refund mechanism by storing data (V.1) or creating accounts (V.2) using a low gas price, and then free (V.1) or self-destruct (v.2) them in a later transaction which utilizes a higher gas price. This mechanism is only economical when the high gas price redeeming the tokens is more than twice as high as the low gas price used to mint them.
Gas Tokens do not actually increase the state-size lon-term, as they release all the data they store in order to benefit from their gas boost.
However, they do manipulate the gas price auction.
There had been concerns that reducing the intrinsic cost of transactions from `21,000` to `7,000` would boost the savings achiieved using gas tokens, however these concerns are unfounded.
Due to some overhead of using the smart contract, minting and freeing a single gas-token is uneconomical, but the effect of the overhead diminishes the more tokens are minted and freed.
This is also the reason why their efficiency is hardly affected by the intrinsic cost of transactions - the gas token is designed to spread the transaction cost among many tokens.
The creators of gas tokens outline the maximal potential savings when minting very large number of tokens (up to x2.97 for V.1, and up to 3.49 for V.2). These numbers are *unaffected* by the proposed change. In a more realistic scenario where 100 gas tokens are minted, the proposed change increases the saving multiplier by a minuscule amount, generally smaller than the increase achieved by minting 200 tokens instead of 100.
The table below captures the effect of this proposal on the savings multiplier in a
Version | free_gas_price / mint_gas_price | old savings multiplier | new savings multiplier | saving multiplier of 200 tokens