mirror of
https://github.com/status-im/EIPs.git
synced 2025-01-10 14:56:01 +00:00
201 lines
12 KiB
Markdown
201 lines
12 KiB
Markdown
|
---
|
|||
|
eip: 1485
|
|||
|
title: TEthashV1
|
|||
|
author: trustfarm (KT Ahn - 안씨아저씨) <trustfarm.info@gmail.com>, <cpplover@trustfarm.net>,
|
|||
|
discussions-to: https://ethereum-magicians.org/t/anti-eth-asic-mining-eip-1488-pr/1807
|
|||
|
status: Draft
|
|||
|
type: Standards Track
|
|||
|
category: Core
|
|||
|
created: 2018-11-01
|
|||
|
---
|
|||
|
|
|||
|
## Simple Summary
|
|||
|
This EIP modifies ethash in order to break ASIC miners specialized for the current ethash mining algorithm.
|
|||
|
|
|||
|
## Abstract
|
|||
|
This EIP pursue "obsolete current ASIC miners" by modifying PoW algorithm in a very low risk manner and update to latest hash algorithm from deprecated FNV Hash algorithms.
|
|||
|
|
|||
|
Following TEthashV1 algorithm suggests safe transition of PoW algorithms and secure the FNV Algorithm in MIX Parts.
|
|||
|
|
|||
|
## Motivation
|
|||
|
Provide original Ethash proof of work verification with minimal set of changes by updating FNV0 algorithm
|
|||
|
|
|||
|
## Specification
|
|||
|
|
|||
|
#### 1. Reference materials on ETHASH FNV0
|
|||
|
|
|||
|
#### Where FNV Applied on ETHASH
|
|||
|
|
|||
|
- In [ETHASH](https://github.com/ethereum/wiki/wiki/Ethash) , FNV Hash is used on
|
|||
|
* 1) On data aggregation function, MIX parts.
|
|||
|
|
|||
|
* Ethash Algorithm
|
|||
|
|
|||
|
```
|
|||
|
Header + Nonce
|
|||
|
|
|
|||
|
Keccak
|
|||
|
|
|
|||
|
**[MIX 0]** --> **[DAG Page]**
|
|||
|
| |
|
|||
|
Mixing <--|
|
|||
|
...
|
|||
|
|
|
|||
|
**[Mix 63]**
|
|||
|
|
|
|||
|
|-----> Mix64 [Process] ---> Mix Digest [32B]
|
|||
|
```
|
|||
|
|
|||
|
* FNV used in DAG Generation
|
|||
|
and Mixing for random access or DAG Page.
|
|||
|
|
|||
|
#### 2. Current applied Ethash FNV hash implementation is deprecated now.
|
|||
|
|
|||
|
[FNV-0_hash (deprecated)](https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-0_hash_(deprecated))
|
|||
|
|
|||
|
It is a simple way of hashing algorithm
|
|||
|
|
|||
|
```
|
|||
|
hash = 0
|
|||
|
for each byte_of_data to be hashed
|
|||
|
hash = hash × FNV_prime
|
|||
|
hash = hash XOR octet_of_data
|
|||
|
return hash
|
|||
|
```
|
|||
|
|
|||
|
When analysed FNV-0 , there's very weak [avalanche effect](https://simple.wikipedia.org/wiki/Avalanche_effect), when hash input changes on 1~2bits. refer [FNV-Analysis reference section](https://github.com/tao-foundation/FNV-Analysis#how-to-test-and-analysis-reference-test-code)
|
|||
|
|
|||
|
We need to research and apply newer FNV hash or short message hash algorithm.
|
|||
|
|
|||
|
#### 3. FNV1A hash algorithm description
|
|||
|
|
|||
|
Previous proposed algorithm based on FNV1 [EIP-1355](https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1355.md)
|
|||
|
|
|||
|
There's a implementation that looks like "Missing Offset Bias" at **FNV1A**.
|
|||
|
|
|||
|
Quotation of [original algorithm FNV1A](https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1a_hash)
|
|||
|
```
|
|||
|
use hash offset
|
|||
|
FNV-1a hash
|
|||
|
The FNV-1a hash differs from the FNV-1 hash by only the order in which the multiply and XOR is performed:[8][10]
|
|||
|
|
|||
|
hash = FNV_offset_basis
|
|||
|
for each byte_of_data to be hashed
|
|||
|
hash = hash XOR byte_of_data
|
|||
|
hash = hash × FNV_prime
|
|||
|
return hash
|
|||
|
```
|
|||
|
|
|||
|
FNV_offset_basis and computation order change of xor and multiplication Makes one more xor and multiply computation, but more secure hash effects than FNV0.
|
|||
|
and make dispersion boundary condition (0, even number, ..) by using of Prime Number.
|
|||
|
|
|||
|
#### 4. Real Implementation for FNV1A
|
|||
|
|
|||
|
Consider real computation resources, in TEthashV1 uses hash byte_of_data to 4bytes aligned data.
|
|||
|
|
|||
|
In TETHashV1, Adapts fully follow the FNV1A implementation.
|
|||
|
|
|||
|
- TETHASHV1 FNV1A implementation
|
|||
|
|
|||
|
Followings are reference implementation of FNV1A adapted in TETHashV1.
|
|||
|
|
|||
|
```cpp
|
|||
|
// Reference Pseudo c/cpp implementation
|
|||
|
|
|||
|
#define FNV_PRIME 0x01000193U
|
|||
|
#define FNV_OFFSET_BASIS 0x811c9dc5U
|
|||
|
|
|||
|
#define fnv1a(x, y) ((((FNV_OFFSET_BASIS^(x))*FNV_PRIME) ^ (y)) * FNV_PRIME)
|
|||
|
#define fnv1a_reduce(a,b,c,d) (fnv1a(fnv1a(fnv1a(a, b), c), d))
|
|||
|
```
|
|||
|
|
|||
|
Another Byte aligned implementation of FNV1A , call to FNV1c
|
|||
|
|
|||
|
```cpp
|
|||
|
#define FNV_PRIME 0x01000193U
|
|||
|
#define FNV_OFFSET_BASIS 0x811c9dc5U
|
|||
|
|
|||
|
#define fnv1i(x) ( (( (( (( \
|
|||
|
( ((FNV_OFFSET_BASIS)^( ((x)>>24)&0x000000ff )) * FNV_PRIME) \
|
|||
|
^ (((x)>>16 )&0x000000ff)) * FNV_PRIME) \
|
|||
|
^ (((x)>>8 )&0x000000ff)) * FNV_PRIME) \
|
|||
|
^ (((x) )&0x000000ff)) * FNV_PRIME) \
|
|||
|
)
|
|||
|
#define fnv1c(x, y) ((fnv1i(x) ^ (y)) * FNV_PRIME)
|
|||
|
```
|
|||
|
|
|||
|
#### 5. [FNV-Analysis](https://github.com/tao-foundation/FNV-Analysis)
|
|||
|
FNV Mix Algorithm Analysis for TEthashV1
|
|||
|
|
|||
|
#### How to test and analysis reference test code.
|
|||
|
|
|||
|
You can compile it with simple in terminal.
|
|||
|
No additional library needs,
|
|||
|
|
|||
|
```
|
|||
|
gcc -o fnvtest fnvcltest.c
|
|||
|
```
|
|||
|
|
|||
|
And You can execute it
|
|||
|
```
|
|||
|
fnvtest
|
|||
|
|
|||
|
F(00,00)::VEC(0, 0, ffffffff, 0):: FNV :00000000, DF=00000000(00) DS(00000000), FNV1 :00000000, DF=00000000(00) DS(00000000), FNV1a:117697cd, DF=117697cd(17) DS(117697cd), FNV1c:1210d00f, DF=127f8dbf(20) DS(11a1725f), F___RC=efe1b9c4, DF:efe1b9c4(19) , F1__RC=deb68dfe, DF:deb68dfe(22) , F1A_RC=99bad28b, DF:99bad28b(17) , F1C_RC=e29fa497, DF:e29fa497(18)
|
|||
|
F(00,01)::VEC(0, 1, ffffffff, 0):: FNV :00000001, DF=00000001(01) DS(00000001), FNV1 :01000193, DF=01000193(06) DS(01000193), FNV1a:1076963a, DF=010001f7(09) DS(01000193), FNV1c:1110ce7c, DF=03001e73(11) DS(01000193), F___RC=fefffe6d, DF:111e47a9(14) , F1__RC=d9fd8597, DF:074b0869(12) , F1A_RC=72c287e0, DF:eb78556b(19) , F1C_RC=6b6991ef, DF:89f63578(17)
|
|||
|
F(00,02)::VEC(0, 2, ffffffff, 0):: FNV :00000002, DF=00000003(02) DS(00000001), FNV1 :02000326, DF=030002b5(08) DS(01000193), FNV1a:0f7694a7, DF=1f00029d(11) DS(01000193), FNV1c:1410d335, DF=05001d49(09) DS(030004b9), F___RC=d8fd8404, DF:26027a69(13) , F1__RC=9b16d24c, DF:42eb57db(19) , F1A_RC=c17f0ecb, DF:b3bd892b(18) , F1C_RC=a5be8e78, DF:ced71f97(21)
|
|||
|
F(00,03)::VEC(0, 3, ffffffff, 0):: FNV :00000003, DF=00000001(01) DS(00000001), FNV1 :030004b9, DF=0100079f(10) DS(01000193), FNV1a:0e769314, DF=010007b3(09) DS(01000193), FNV1c:1310d1a2, DF=07000297(09) DS(01000193), F___RC=b2fb099b, DF:6a068d9f(16) , F1__RC=5c301f01, DF:c726cd4d(17) , F1A_RC=94cf402e, DF:55b04ee5(16) , F1C_RC=aea1a025, DF:0b1f2e5d(17)
|
|||
|
F(00,04)::VEC(0, 4, ffffffff, 0):: FNV :00000004, DF=00000007(03) DS(00000001), FNV1 :0400064c, DF=070002f5(10) DS(01000193), FNV1a:0d769181, DF=03000295(07) DS(01000193), FNV1c:0e10c9c3, DF=1d001861(09) DS(050007df), F___RC=8cf88f32, DF:3e0386a9(14) , F1__RC=1d496bb6, DF:417974b7(17) , F1A_RC=89401d59, DF:1d8f5d77(20) , F1C_RC=e4e96c7c, DF:4a48cc59(13)
|
|||
|
F(00,05)::VEC(0, 5, ffffffff, 0):: FNV :00000005, DF=00000001(01) DS(00000001), FNV1 :050007df, DF=01000193(06) DS(01000193), FNV1a:0c768fee, DF=01001e6f(11) DS(01000193), FNV1c:0d10c830, DF=030001f3(09) DS(01000193), F___RC=66f614c9, DF:ea0e9bfb(20) , F1__RC=de62b86b, DF:c32bd3dd(19) , F1A_RC=346e222c, DF:bd2e3f75(21) , F1C_RC=502e5f82, DF:b4c733fe(20)
|
|||
|
F(00,06)::VEC(0, 6, ffffffff, 0):: FNV :00000006, DF=00000003(02) DS(00000001), FNV1 :06000972, DF=03000ead(10) DS(01000193), FNV1a:0b768e5b, DF=070001b5(09) DS(01000193), FNV1c:1010cce9, DF=1d0004d9(10) DS(030004b9), F___RC=40f39a60, DF:26058ea9(13) , F1__RC=9f7c0520, DF:411ebd4b(16) , F1A_RC=b376a527, DF:8718870b(13) , F1C_RC=1241a9a4, DF:426ff626(17)
|
|||
|
F(00,07)::VEC(0, 7, ffffffff, 0):: FNV :00000007, DF=00000001(01) DS(00000001), FNV1 :07000b05, DF=01000277(08) DS(01000193), FNV1a:0a768cc8, DF=01000293(06) DS(01000193), FNV1c:0f10cb56, DF=1f0007bf(15) DS(01000193), F___RC=1af11ff7, DF:5a028597(13) , F1__RC=609551d5, DF:ffe954f5(22) , F1A_RC=14293bea, DF:a75f9ecd(21) , F1C_RC=49d34bba, DF:5b92e21e(16)
|
|||
|
F(00,08)::VEC(0, 8, ffffffff, 0):: FNV :00000008, DF=0000000f(04) DS(00000001), FNV1 :08000c98, DF=0f00079d(12) DS(01000193), FNV1a:09768b35, DF=030007fd(12) DS(01000193), FNV1c:1a10dca7, DF=150017f1(12) DS(0b001151), F___RC=f4eea58e, DF:ee1fba79(21) , F1__RC=21ae9e8a, DF:413bcf5f(19) , F1A_RC=eeebb7a5, DF:fac28c4f(17) , F1C_RC=7da04f47, DF:347304fd(16)
|
|||
|
F(00,09)::VEC(0, 9, ffffffff, 0):: FNV :00000009, DF=00000001(01) DS(00000001), FNV1 :09000e2b, DF=010002b3(07) DS(01000193), FNV1a:087689a2, DF=01000297(07) DS(01000193), FNV1c:1910db14, DF=030007b3(10) DS(01000193), F___RC=ceec2b25, DF:3a028eab(14) , F1__RC=e2c7eb3f, DF:c36975b5(18) , F1A_RC=54e1aef8, DF:ba0a195d(15) , F1C_RC=d425e1af, DF:a985aee8(16)
|
|||
|
F(00,0a)::VEC(0, a, ffffffff, 0):: FNV :0000000a, DF=00000003(02) DS(00000001), FNV1 :0a000fbe, DF=03000195(07) DS(01000193), FNV1a:0776880f, DF=0f0001ad(10) DS(01000193), FNV1c:1c10dfcd, DF=050004d9(08) DS(030004b9), F___RC=a8e9b0bc, DF:66059b99(15) , F1__RC=a3e137f4, DF:4126dccb(15) , F1A_RC=213fcd63, DF:75de639b(20) , F1C_RC=7e1d2751, DF:aa38c6fe(18)
|
|||
|
F(00,0b)::VEC(0, b, ffffffff, 0):: FNV :0000000b, DF=00000001(01) DS(00000001), FNV1 :0b001151, DF=01001eef(12) DS(01000193), FNV1a:0676867c, DF=01000e73(09) DS(01000193), FNV1c:1b10de3a, DF=070001f7(11) DS(01000193), F___RC=82e73653, DF:2a0e86ef(16) , F1__RC=64fa84a9, DF:c71bb35d(19) , F1A_RC=5598ce46, DF:74a70325(14) , F1C_RC=6400c630, DF:1a1de161(14)
|
|||
|
F(00,0c)::VEC(0, c, ffffffff, 0):: FNV :0000000c, DF=00000007(03) DS(00000001), FNV1 :0c0012e4, DF=070003b5(10) DS(01000193), FNV1a:057684e9, DF=03000295(07) DS(01000193), FNV1c:1610d65b, DF=0d000861(07) DS(050007df), F___RC=5ce4bbea, DF:de038db9(17) , F1__RC=2613d15e, DF:42e955f7(18) , F1A_RC=6a220ff1, DF:3fbac1b7(20) , F1C_RC=6e781da4, DF:0a78db94(15)
|
|||
|
F(00,0d)::VEC(0, d, ffffffff, 0):: FNV :0000000d, DF=00000001(01) DS(00000001), FNV1 :0d001477, DF=01000693(07) DS(01000193), FNV1a:04768356, DF=010007bf(11) DS(01000193), FNV1c:1510d4c8, DF=03000293(07) DS(01000193), F___RC=36e24181, DF:6a06fa6b(17) , F1__RC=e72d1e13, DF:c13ecf4d(18) , F1A_RC=168d4944, DF:7caf46b5(19) , F1C_RC=65bbcfa1, DF:0bc3d205(13)
|
|||
|
F(00,0e)::VEC(0, e, ffffffff, 0):: FNV :0000000e, DF=00000003(02) DS(00000001), FNV1 :0e00160a, DF=0300027d(09) DS(01000193), FNV1a:037681c3, DF=07000295(08) DS(01000193), FNV1c:1810d981, DF=0d000d49(09) DS(030004b9), F___RC=10dfc718, DF:263d8699(15) , F1__RC=a8466ac8, DF:4f6b74db(20) , F1A_RC=93e667bf, DF:856b2efb(19) , F1C_RC=76f80ee3, DF:1343c142(11)
|
|||
|
F(00,0f)::VEC(0, f, ffffffff, 0):: FNV :0000000f, DF=00000001(01) DS(00000001), FNV1 :0f00179d, DF=01000197(07) DS(01000193), FNV1a:02768030, DF=010001f3(08) DS(01000193), FNV1c:1710d7ee, DF=0f000e6f(13) DS(01000193), F___RC=eadd4caf, DF:fa028bb7(17) , F1__RC=695fb77d, DF:c119ddb5(17) , F1A_RC=0f485682, DF:9cae313d(17) , F1C_RC=3667e8dc, DF:409fe63f(18)
|
|||
|
F(00,10)::VEC(0, 10, ffffffff, 0):: FNV :00000010, DF=0000001f(05) DS(00000001), FNV1 :10001930, DF=1f000ead(13) DS(01000193), FNV1a:01767e9d, DF=0300fead(14) DS(01000193), FNV1c:0210b6df, DF=15006131(09) DS(1500210f), F___RC=c4dad246, DF:2e079ee9(17) , F1__RC=2a790432, DF:4326b34f(16) , F1A_RC=d10adebd, DF:de42883f(16) , F1C_RC=1ce48e12, DF:2a8366ce(15)
|
|||
|
```
|
|||
|
|
|||
|
`F(00,01)` : is input x,y
|
|||
|
|
|||
|
`VEC(0, 1, ffffffff, 0)` : is `fnv_reduce` input vector (a,b,c,d)
|
|||
|
|
|||
|
`FNV :00000001, DF=00000001(01) DS(00000001)` :
|
|||
|
* `FNV(00,01)` result is 00000001 ,
|
|||
|
* `DF` : is changed bitcounts, compared with previous outputs, in this case prev[00,00] current[00,01] input is 1bit changed, and output result 1bit changed.
|
|||
|
* `DS` : is distances of previous result and current result , ABS(prev_fnvresult,current_fnvresult).
|
|||
|
|
|||
|
** Basically, `DF` is higher is best on hash algorithm.
|
|||
|
|
|||
|
`F___RC=fefffe6d, DF:111e47a9(14)` : `fnv_reduce = fnv(fnv(fnv(a,b),c),d) ` result is fefffe6d , and Different Bits counts are `14` bits.
|
|||
|
|
|||
|
|
|||
|
## Rationale
|
|||
|
|
|||
|
In case of ethash algorithm, it can't prevent ASIC forever.
|
|||
|
|
|||
|
And, current ethash algorithm's FNV function is depricated.
|
|||
|
|
|||
|
So, It needs to be upgraded and it will make current ethash based ASICs obsolete.
|
|||
|
|
|||
|
And current TETHASHV1 FNV1A implementation is based on most of ethash , which is verified for a long time.
|
|||
|
|
|||
|
Another propose of big differencing the Ethash algorithm need to crypto analysis for a long times and need to GPU code optimization times.
|
|||
|
|
|||
|
**Verification and Optimization timeline Examples**
|
|||
|
|
|||
|
orignal ethminer (2015) -> claymore optimized miner (2016) [1year]
|
|||
|
|
|||
|
genoil ethminer (2015) -> ethereum-mining/ethminer (2017) [2year]
|
|||
|
|
|||
|
## Test Results::
|
|||
|
|
|||
|
Tethash miner has 2~3% of hashrate degrade on GPU, due to more core computation time.
|
|||
|
|
|||
|
## Copyright
|
|||
|
|
|||
|
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).
|