Improved GHASH pclmul implementation (parallel processing of four blocks, +70% speed).

This commit is contained in:
Thomas Pornin 2017-02-15 21:49:28 +01:00
parent db8f1b6645
commit 98432a0a30

View File

@ -42,164 +42,266 @@
#include <intrin.h> #include <intrin.h>
#endif #endif
/*
* GHASH is defined over elements of GF(2^128) with "full little-endian"
* representation: leftmost byte is least significant, and, within each
* byte, leftmost _bit_ is least significant. The natural ordering in
* x86 is "mixed little-endian": bytes are ordered from least to most
* significant, but bits within a byte are in most-to-least significant
* order. Going to full little-endian representation would require
* reversing bits within each byte, which is doable but expensive.
*
* Instead, we go to full big-endian representation, by swapping bytes
* around, which is done with a single _mm_shuffle_epi8() opcode (it
* comes with SSSE3; all CPU that offer pclmulqdq also have SSSE3). We
* can use a full big-endian representation because in a carryless
* multiplication, we have a nice bit reversal property:
*
* rev_128(x) * rev_128(y) = rev_255(x * y)
*
* So by using full big-endian, we still get the right result, except
* that it is right-shifted by 1 bit. The left-shift is relatively
* inexpensive, and it can be mutualised.
*
*
* Since SSE2 opcodes do not have facilities for shitfting full 128-bit
* values with bit precision, we have to break down values into 64-bit
* chunks. We number chunks from 0 to 3 in left to right order.
*/
/*
* From a 128-bit value kw, compute kx as the XOR of the two 64-bit
* halves of kw (into the right half of kx; left half is unspecified).
*/
#define BK(kw, kx) do { \
kx = _mm_xor_si128(kw, _mm_shuffle_epi32(kw, 0x0E)); \
} while (0)
/*
* Combine two 64-bit values (k0:k1) into a 128-bit (kw) value and
* the XOR of the two values (kx).
*/
#define PBK(k0, k1, kw, kx) do { \
kw = _mm_unpacklo_epi64(k1, k0); \
kx = _mm_xor_si128(k0, k1); \
} while (0)
/*
* Left-shift by 1 bit a 256-bit value (in four 64-bit words).
*/
#define SL_256(x0, x1, x2, x3) do { \
x0 = _mm_or_si128( \
_mm_slli_epi64(x0, 1), \
_mm_srli_epi64(x1, 63)); \
x1 = _mm_or_si128( \
_mm_slli_epi64(x1, 1), \
_mm_srli_epi64(x2, 63)); \
x2 = _mm_or_si128( \
_mm_slli_epi64(x2, 1), \
_mm_srli_epi64(x3, 63)); \
x3 = _mm_slli_epi64(x3, 1); \
} while (0)
/*
* Perform reduction in GF(2^128). The 256-bit value is in x0..x3;
* result is written in x0..x1.
*/
#define REDUCE_F128(x0, x1, x2, x3) do { \
x1 = _mm_xor_si128( \
x1, \
_mm_xor_si128( \
_mm_xor_si128( \
x3, \
_mm_srli_epi64(x3, 1)), \
_mm_xor_si128( \
_mm_srli_epi64(x3, 2), \
_mm_srli_epi64(x3, 7)))); \
x2 = _mm_xor_si128( \
_mm_xor_si128( \
x2, \
_mm_slli_epi64(x3, 63)), \
_mm_xor_si128( \
_mm_slli_epi64(x3, 62), \
_mm_slli_epi64(x3, 57))); \
x0 = _mm_xor_si128( \
x0, \
_mm_xor_si128( \
_mm_xor_si128( \
x2, \
_mm_srli_epi64(x2, 1)), \
_mm_xor_si128( \
_mm_srli_epi64(x2, 2), \
_mm_srli_epi64(x2, 7)))); \
x1 = _mm_xor_si128( \
_mm_xor_si128( \
x1, \
_mm_slli_epi64(x2, 63)), \
_mm_xor_si128( \
_mm_slli_epi64(x2, 62), \
_mm_slli_epi64(x2, 57))); \
} while (0)
/*
* Square value kw into (dw,dx).
*/
#define SQUARE_F128(kw, dw, dx) do { \
__m128i z0, z1, z2, z3; \
z1 = _mm_clmulepi64_si128(kw, kw, 0x11); \
z3 = _mm_clmulepi64_si128(kw, kw, 0x00); \
z0 = _mm_shuffle_epi32(z1, 0x0E); \
z2 = _mm_shuffle_epi32(z3, 0x0E); \
SL_256(z0, z1, z2, z3); \
REDUCE_F128(z0, z1, z2, z3); \
PBK(z0, z1, dw, dx); \
} while (0)
/* see bearssl_hash.h */ /* see bearssl_hash.h */
BR_TARGET("ssse3,pclmul") BR_TARGET("ssse3,pclmul")
void void
br_ghash_pclmul(void *y, const void *h, const void *data, size_t len) br_ghash_pclmul(void *y, const void *h, const void *data, size_t len)
{ {
/* const unsigned char *buf1, *buf2;
* TODO: loop below processes one 16-bit word at a time. We unsigned char tmp[64];
* could parallelize, using: size_t num4, num1;
* ((y+x0)*h+x1)*h = (y+x0)*(h^2) + x1*h __m128i yw, h1w, h1x;
* i.e. precompute h^2, then handle two words at a time, mostly
* in parallel (this may extend to more words as well...).
*/
const unsigned char *buf;
__m128i yx, hx;
__m128i h0, h1, h2;
__m128i byteswap_index; __m128i byteswap_index;
byteswap_index = _mm_set_epi8(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
yx = _mm_loadu_si128(y);
hx = _mm_loadu_si128(h);
yx = _mm_shuffle_epi8(yx, byteswap_index);
hx = _mm_shuffle_epi8(hx, byteswap_index);
/* /*
* We byte-swap y and h for full big-endian interpretation * We split data into two chunks. First chunk starts at buf1
* (see below). * and contains num4 blocks of 64-byte values. Second chunk
* starts at buf2 and contains num1 blocks of 16-byte values.
* We want the first chunk to be as large as possible.
*/ */
buf1 = data;
h0 = hx; num4 = len >> 6;
h1 = _mm_shuffle_epi32(hx, 0x0E); len &= 63;
h2 = _mm_xor_si128(h0, h1); buf2 = buf1 + (num4 << 6);
num1 = (len + 15) >> 4;
buf = data; if ((len & 15) != 0) {
while (len > 0) { memcpy(tmp, buf2, len);
__m128i x; memset(tmp + len, 0, (num1 << 4) - len);
__m128i t0, t1, t2, v0, v1, v2, v3; buf2 = tmp;
__m128i y0, y1, y2;
/*
* Load next 128-bit word. If there are not enough bytes
* for the next word, we pad it with zeros (as per the
* API for this function; it's also what is useful for
* implementation of GCM).
*/
if (len >= 16) {
x = _mm_loadu_si128((const void *)buf);
buf += 16;
len -= 16;
} else {
unsigned char tmp[16];
memcpy(tmp, buf, len);
memset(tmp + len, 0, (sizeof tmp) - len);
x = _mm_loadu_si128((void *)tmp);
len = 0;
}
/*
* Specification of GCM is basically "full little-endian",
* i.e. leftmost bit is most significant; but decoding
* performed by _mm_loadu_si128 is "mixed endian" (leftmost
* _byte_ is least significant, but within each byte, the
* leftmost _bit_ is most significant). We could reverse
* bits in each byte; however, it is more efficient to
* swap the bytes and thus emulate full big-endian
* decoding.
*
* Big-endian works here because multiplication in
* GF[2](X) is "carry-less", thereby allowing reversal:
* if rev_n(x) consists in reversing the order of bits
* in x, then:
* rev_128(A)*rev_128(B) = rev_255(A*B)
* so we can compute A*B by using rev_128(A) and rev_128(B),
* and an extra shift at the end (because 255 != 256). Bit
* reversal is exactly what happens when converting from
* full little-endian to full big-endian.
*/
x = _mm_shuffle_epi8(x, byteswap_index);
yx = _mm_xor_si128(yx, x);
/*
* We want the product to be broken down into four
* 64-bit values, because there is no SSE* opcode that
* can do a shift on a 128-bit value.
*/
y0 = yx;
y1 = _mm_shuffle_epi32(yx, 0x0E);
y2 = _mm_xor_si128(y0, y1);
t0 = _mm_clmulepi64_si128(y0, h0, 0x00);
t1 = _mm_clmulepi64_si128(yx, hx, 0x11);
t2 = _mm_clmulepi64_si128(y2, h2, 0x00);
t2 = _mm_xor_si128(t2, _mm_xor_si128(t0, t1));
v0 = t0;
v1 = _mm_xor_si128(_mm_shuffle_epi32(t0, 0x0E), t2);
v2 = _mm_xor_si128(t1, _mm_shuffle_epi32(t2, 0x0E));
v3 = _mm_shuffle_epi32(t1, 0x0E);
/*
* Do the corrective 1-bit shift (255->256).
*/
v3 = _mm_or_si128(
_mm_slli_epi64(v3, 1),
_mm_srli_epi64(v2, 63));
v2 = _mm_or_si128(
_mm_slli_epi64(v2, 1),
_mm_srli_epi64(v1, 63));
v1 = _mm_or_si128(
_mm_slli_epi64(v1, 1),
_mm_srli_epi64(v0, 63));
v0 = _mm_slli_epi64(v0, 1);
/*
* Perform polynomial reduction into GF(2^128).
*/
v2 = _mm_xor_si128(
v2,
_mm_xor_si128(
_mm_xor_si128(
v0,
_mm_srli_epi64(v0, 1)),
_mm_xor_si128(
_mm_srli_epi64(v0, 2),
_mm_srli_epi64(v0, 7))));
v1 = _mm_xor_si128(
_mm_xor_si128(
v1,
_mm_slli_epi64(v0, 63)),
_mm_xor_si128(
_mm_slli_epi64(v0, 62),
_mm_slli_epi64(v0, 57)));
v3 = _mm_xor_si128(
v3,
_mm_xor_si128(
_mm_xor_si128(
v1,
_mm_srli_epi64(v1, 1)),
_mm_xor_si128(
_mm_srli_epi64(v1, 2),
_mm_srli_epi64(v1, 7))));
v2 = _mm_xor_si128(
_mm_xor_si128(
v2,
_mm_slli_epi64(v1, 63)),
_mm_xor_si128(
_mm_slli_epi64(v1, 62),
_mm_slli_epi64(v1, 57)));
/*
* We reduced toward the high words (v2 and v3), which
* are the new value for y.
*/
yx = _mm_unpacklo_epi64(v2, v3);
} }
yx = _mm_shuffle_epi8(yx, byteswap_index); /*
_mm_storeu_si128(y, yx); * Constant value to perform endian conversion.
*/
byteswap_index = _mm_set_epi8(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
/*
* Load y and h.
*/
yw = _mm_loadu_si128(y);
h1w = _mm_loadu_si128(h);
yw = _mm_shuffle_epi8(yw, byteswap_index);
h1w = _mm_shuffle_epi8(h1w, byteswap_index);
BK(h1w, h1x);
if (num4 > 0) {
__m128i h2w, h2x, h3w, h3x, h4w, h4x;
__m128i t0, t1, t2, t3;
/*
* Compute h2 = h^2.
*/
SQUARE_F128(h1w, h2w, h2x);
/*
* Compute h3 = h^3 = h*(h^2).
*/
t1 = _mm_clmulepi64_si128(h1w, h2w, 0x11);
t3 = _mm_clmulepi64_si128(h1w, h2w, 0x00);
t2 = _mm_xor_si128(_mm_clmulepi64_si128(h1x, h2x, 0x00),
_mm_xor_si128(t1, t3));
t0 = _mm_shuffle_epi32(t1, 0x0E);
t1 = _mm_xor_si128(t1, _mm_shuffle_epi32(t2, 0x0E));
t2 = _mm_xor_si128(t2, _mm_shuffle_epi32(t3, 0x0E));
SL_256(t0, t1, t2, t3);
REDUCE_F128(t0, t1, t2, t3);
PBK(t0, t1, h3w, h3x);
/*
* Compute h4 = h^4 = (h^2)^2.
*/
SQUARE_F128(h2w, h4w, h4x);
while (num4 -- > 0) {
__m128i aw0, aw1, aw2, aw3;
__m128i ax0, ax1, ax2, ax3;
aw0 = _mm_loadu_si128((void *)(buf1 + 0));
aw1 = _mm_loadu_si128((void *)(buf1 + 16));
aw2 = _mm_loadu_si128((void *)(buf1 + 32));
aw3 = _mm_loadu_si128((void *)(buf1 + 48));
aw0 = _mm_shuffle_epi8(aw0, byteswap_index);
aw1 = _mm_shuffle_epi8(aw1, byteswap_index);
aw2 = _mm_shuffle_epi8(aw2, byteswap_index);
aw3 = _mm_shuffle_epi8(aw3, byteswap_index);
buf1 += 64;
aw0 = _mm_xor_si128(aw0, yw);
BK(aw1, ax1);
BK(aw2, ax2);
BK(aw3, ax3);
BK(aw0, ax0);
t1 = _mm_xor_si128(
_mm_xor_si128(
_mm_clmulepi64_si128(aw0, h4w, 0x11),
_mm_clmulepi64_si128(aw1, h3w, 0x11)),
_mm_xor_si128(
_mm_clmulepi64_si128(aw2, h2w, 0x11),
_mm_clmulepi64_si128(aw3, h1w, 0x11)));
t3 = _mm_xor_si128(
_mm_xor_si128(
_mm_clmulepi64_si128(aw0, h4w, 0x00),
_mm_clmulepi64_si128(aw1, h3w, 0x00)),
_mm_xor_si128(
_mm_clmulepi64_si128(aw2, h2w, 0x00),
_mm_clmulepi64_si128(aw3, h1w, 0x00)));
t2 = _mm_xor_si128(
_mm_xor_si128(
_mm_clmulepi64_si128(ax0, h4x, 0x00),
_mm_clmulepi64_si128(ax1, h3x, 0x00)),
_mm_xor_si128(
_mm_clmulepi64_si128(ax2, h2x, 0x00),
_mm_clmulepi64_si128(ax3, h1x, 0x00)));
t2 = _mm_xor_si128(t2, _mm_xor_si128(t1, t3));
t0 = _mm_shuffle_epi32(t1, 0x0E);
t1 = _mm_xor_si128(t1, _mm_shuffle_epi32(t2, 0x0E));
t2 = _mm_xor_si128(t2, _mm_shuffle_epi32(t3, 0x0E));
SL_256(t0, t1, t2, t3);
REDUCE_F128(t0, t1, t2, t3);
yw = _mm_unpacklo_epi64(t1, t0);
}
}
while (num1 -- > 0) {
__m128i aw, ax;
__m128i t0, t1, t2, t3;
aw = _mm_loadu_si128((void *)buf2);
aw = _mm_shuffle_epi8(aw, byteswap_index);
buf2 += 16;
aw = _mm_xor_si128(aw, yw);
BK(aw, ax);
t1 = _mm_clmulepi64_si128(aw, h1w, 0x11);
t3 = _mm_clmulepi64_si128(aw, h1w, 0x00);
t2 = _mm_clmulepi64_si128(ax, h1x, 0x00);
t2 = _mm_xor_si128(t2, _mm_xor_si128(t1, t3));
t0 = _mm_shuffle_epi32(t1, 0x0E);
t1 = _mm_xor_si128(t1, _mm_shuffle_epi32(t2, 0x0E));
t2 = _mm_xor_si128(t2, _mm_shuffle_epi32(t3, 0x0E));
SL_256(t0, t1, t2, t3);
REDUCE_F128(t0, t1, t2, t3);
yw = _mm_unpacklo_epi64(t1, t0);
}
yw = _mm_shuffle_epi8(yw, byteswap_index);
_mm_storeu_si128(y, yw);
} }
/* /*