Fixed modular reduction bug in the special field for P-256 (in some rare cases, value would end up being negative, which would corrupt subsequent operations).

This commit is contained in:
Thomas Pornin 2017-06-24 00:31:09 +02:00
parent d8641065c9
commit 2b738493bd
3 changed files with 98 additions and 4 deletions

View File

@ -1122,6 +1122,22 @@ mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b)
t[14] -= cc << 10;
t[7] -= cc << 5;
t[0] += cc;
/*
* If the carry is negative, then after carry propagation, we may
* end up with a value which is negative, and we don't want that.
* Thus, in that case, we add the modulus. Note that the subtraction
* result, when the carry is negative, is always smaller than the
* modulus, so the extra addition will not make the value exceed
* twice the modulus.
*/
cc >>= 31;
t[0] -= cc;
t[7] += cc << 5;
t[14] += cc << 10;
t[17] -= cc << 3;
t[19] += cc << 9;
norm13(d, t, 20);
}
@ -1195,6 +1211,22 @@ square_f256(uint32_t *d, const uint32_t *a)
t[14] -= cc << 10;
t[7] -= cc << 5;
t[0] += cc;
/*
* If the carry is negative, then after carry propagation, we may
* end up with a value which is negative, and we don't want that.
* Thus, in that case, we add the modulus. Note that the subtraction
* result, when the carry is negative, is always smaller than the
* modulus, so the extra addition will not make the value exceed
* twice the modulus.
*/
cc >>= 31;
t[0] -= cc;
t[7] += cc << 5;
t[14] += cc << 10;
t[17] -= cc << 3;
t[19] += cc << 9;
norm13(d, t, 20);
}

View File

@ -394,7 +394,7 @@ mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b)
uint32_t t[18];
uint64_t s[18];
uint64_t cc, x;
uint32_t z;
uint32_t z, c;
int i;
mul9(t, a, b);
@ -465,7 +465,15 @@ mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b)
d[8] &= 0xFFFF;
/*
* Subtract cc*p.
* One extra round of reduction, for cc*2^256, which means
* adding cc*(2^224-2^192-2^96+1) to a 256-bit (nonnegative)
* value. If cc is negative, then it may happen (rarely, but
* not neglectibly so) that the result would be negative. In
* order to avoid that, if cc is negative, then we add the
* modulus once. Note that if cc is negative, then propagating
* that carry must yield a value lower than the modulus, so
* adding the modulus once will keep the final result under
* twice the modulus.
*/
z = (uint32_t)cc;
d[3] -= z << 6;
@ -473,6 +481,12 @@ mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b)
d[7] -= ARSH(z, 18);
d[7] += (z << 14) & 0x3FFFFFFF;
d[8] += ARSH(z, 16);
c = z >> 31;
d[0] -= c;
d[3] += c << 6;
d[6] += c << 12;
d[7] -= c << 14;
d[8] += c << 16;
for (i = 0; i < 9; i ++) {
uint32_t w;
@ -492,7 +506,7 @@ square_f256(uint32_t *d, const uint32_t *a)
uint32_t t[18];
uint64_t s[18];
uint64_t cc, x;
uint32_t z;
uint32_t z, c;
int i;
square9(t, a);
@ -563,7 +577,15 @@ square_f256(uint32_t *d, const uint32_t *a)
d[8] &= 0xFFFF;
/*
* Subtract cc*p.
* One extra round of reduction, for cc*2^256, which means
* adding cc*(2^224-2^192-2^96+1) to a 256-bit (nonnegative)
* value. If cc is negative, then it may happen (rarely, but
* not neglectibly so) that the result would be negative. In
* order to avoid that, if cc is negative, then we add the
* modulus once. Note that if cc is negative, then propagating
* that carry must yield a value lower than the modulus, so
* adding the modulus once will keep the final result under
* twice the modulus.
*/
z = (uint32_t)cc;
d[3] -= z << 6;
@ -571,6 +593,12 @@ square_f256(uint32_t *d, const uint32_t *a)
d[7] -= ARSH(z, 18);
d[7] += (z << 14) & 0x3FFFFFFF;
d[8] += ARSH(z, 16);
c = z >> 31;
d[0] -= c;
d[3] += c << 6;
d[6] += c << 12;
d[7] -= c << 14;
d[8] += c << 16;
for (i = 0; i < 9; i ++) {
uint32_t w;

View File

@ -5062,6 +5062,39 @@ test_EC_inner(const char *sk, const char *sU,
fflush(stdout);
}
static void
test_EC_P256_carry_inner(const br_ec_impl *impl, const char *sP, const char *sQ)
{
unsigned char P[65], Q[sizeof P], k[1];
size_t plen, qlen;
plen = hextobin(P, sP);
qlen = hextobin(Q, sQ);
if (plen != sizeof P || qlen != sizeof P) {
fprintf(stderr, "KAT is incorrect\n");
exit(EXIT_FAILURE);
}
k[0] = 0x10;
if (impl->mul(P, plen, k, 1, BR_EC_secp256r1) != 1) {
fprintf(stderr, "P-256 multiplication failed\n");
exit(EXIT_FAILURE);
}
check_equals("P256_carry", P, Q, plen);
printf(".");
fflush(stdout);
}
static void
test_EC_P256_carry(const br_ec_impl *impl)
{
test_EC_P256_carry_inner(impl,
"0435BAA24B2B6E1B3C88E22A383BD88CC4B9A3166E7BCF94FF6591663AE066B33B821EBA1B4FC8EA609A87EB9A9C9A1CCD5C9F42FA1365306F64D7CAA718B8C978",
"0447752A76CA890328D34E675C4971EC629132D1FC4863EDB61219B72C4E58DC5E9D51E7B293488CFD913C3CF20E438BB65C2BA66A7D09EABB45B55E804260C5EB");
test_EC_P256_carry_inner(impl,
"04DCAE9D9CE211223602024A6933BD42F77B6BF4EAB9C8915F058C149419FADD2CC9FC0707B270A1B5362BA4D249AFC8AC3DA1EFCA8270176EEACA525B49EE19E6",
"048DAC7B0BE9B3206FCE8B24B6B4AEB122F2A67D13E536B390B6585CA193427E63F222388B5F51D744D6F5D47536D89EEEC89552BCB269E7828019C4410DFE980A");
}
static void
test_EC_KAT(const char *name, const br_ec_impl *impl, uint32_t curve_mask)
{
@ -5074,6 +5107,7 @@ test_EC_KAT(const char *name, const br_ec_impl *impl, uint32_t curve_mask)
"C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721",
"0460FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB67903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299",
impl, BR_EC_secp256r1);
test_EC_P256_carry(impl);
}
if (curve_mask & ((uint32_t)1 << BR_EC_secp384r1)) {
test_EC_inner(