98 lines
3.0 KiB
Python
98 lines
3.0 KiB
Python
|
# originally from https://mindfulmodeler.substack.com/p/proofreading-an-entire-book-with
|
||
|
# and then modified for our use case.
|
||
|
import sys
|
||
|
import os
|
||
|
from langchain.prompts import PromptTemplate
|
||
|
from langchain.chat_models import ChatOpenAI
|
||
|
from langchain.text_splitter import MarkdownTextSplitter
|
||
|
from langchain.text_splitter import CharacterTextSplitter
|
||
|
from langchain.prompts.chat import (
|
||
|
ChatPromptTemplate,
|
||
|
SystemMessagePromptTemplate,
|
||
|
HumanMessagePromptTemplate,
|
||
|
)
|
||
|
from langchain.schema import (
|
||
|
AIMessage,
|
||
|
HumanMessage,
|
||
|
SystemMessage
|
||
|
)
|
||
|
|
||
|
human_template = """
|
||
|
{text}
|
||
|
"""
|
||
|
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
|
||
|
|
||
|
# system_text = """You are an expert technical editor specializing in business process management documentation written for enterprise software users. You are especially good at cutting clutter.
|
||
|
#
|
||
|
# - Improve grammar and language
|
||
|
# - fix errors
|
||
|
# - cut clutter
|
||
|
# - keep tone and voice
|
||
|
# - don't change markdown syntax, e.g. keep [@reference]
|
||
|
# - never cut jokes
|
||
|
# - output 1 line per sentence (same as input)
|
||
|
# """
|
||
|
|
||
|
# style ideas from 24 aug 2023:
|
||
|
# - short and focused
|
||
|
# - clear over fun
|
||
|
# - brief over verbose
|
||
|
|
||
|
system_text = """You are an expert technical editor specializing in business process management documentation written for enterprise software users.
|
||
|
|
||
|
- Improve grammar and language
|
||
|
- fix errors
|
||
|
- keep tone and voice
|
||
|
- don't change markdown syntax, e.g. keep [@reference]
|
||
|
- do not remove entire sentences
|
||
|
- never cut jokes
|
||
|
- output 1 line per sentence (same as input)
|
||
|
"""
|
||
|
|
||
|
system_prompt = SystemMessage(content=system_text)
|
||
|
|
||
|
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
||
|
if openai_api_key is None:
|
||
|
keyfile = "oai.key"
|
||
|
with open(keyfile, 'r') as f:
|
||
|
openai_api_key = f.read().strip()
|
||
|
|
||
|
# model = "gpt-4"
|
||
|
model = "gpt-3.5-turbo"
|
||
|
|
||
|
# If you get timeouts, you might have to increase timeout parameter
|
||
|
llm = ChatOpenAI(openai_api_key=openai_api_key, model=model, request_timeout=240)
|
||
|
|
||
|
def process_file(input_file):
|
||
|
output_file = os.path.splitext(input_file)[0] + ".qmd"
|
||
|
|
||
|
with open(input_file, 'r') as f:
|
||
|
content = f.read()
|
||
|
|
||
|
# Markdown splitter didn't work so well
|
||
|
# splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||
|
|
||
|
# FIXME: actually split
|
||
|
# splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=1000, chunk_overlap=0)
|
||
|
# docs = splitter.split_text(content)
|
||
|
docs = [content]
|
||
|
|
||
|
print("Split into {} docs".format(len(docs)))
|
||
|
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_message_prompt])
|
||
|
|
||
|
with open(output_file, 'w') as f:
|
||
|
for doc in docs:
|
||
|
print(f"doc: {doc}")
|
||
|
result = llm(chat_prompt.format_prompt(text=doc).to_messages())
|
||
|
print(result.content)
|
||
|
f.write(result.content + '\n')
|
||
|
|
||
|
print(f"Edited file saved as {output_file}")
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if len(sys.argv) < 2:
|
||
|
print("Usage: python script.py input_file")
|
||
|
else:
|
||
|
input_file = sys.argv[1]
|
||
|
process_file(input_file)
|