426 lines
19 KiB
Python
426 lines
19 KiB
Python
import random
|
|
import re
|
|
import string
|
|
import xml.etree.ElementTree as ElementTree
|
|
from datetime import datetime
|
|
|
|
from SpiffWorkflow import Task as SpiffTask, WorkflowException
|
|
from SpiffWorkflow.bpmn.BpmnScriptEngine import BpmnScriptEngine
|
|
from SpiffWorkflow.bpmn.parser.ValidationException import ValidationException
|
|
from SpiffWorkflow.bpmn.serializer.BpmnSerializer import BpmnSerializer
|
|
from SpiffWorkflow.bpmn.specs.EndEvent import EndEvent
|
|
from SpiffWorkflow.bpmn.workflow import BpmnWorkflow
|
|
from SpiffWorkflow.camunda.parser.CamundaParser import CamundaParser
|
|
from SpiffWorkflow.dmn.parser.BpmnDmnParser import BpmnDmnParser
|
|
from SpiffWorkflow.exceptions import WorkflowTaskExecException
|
|
from SpiffWorkflow.operators import Operator
|
|
from SpiffWorkflow.specs import WorkflowSpec
|
|
|
|
from crc import session
|
|
from crc.api.common import ApiError
|
|
from crc.models.file import FileDataModel, FileModel, FileType
|
|
from crc.models.workflow import WorkflowStatus, WorkflowModel
|
|
from crc.scripts.script import Script
|
|
|
|
|
|
class CustomBpmnScriptEngine(BpmnScriptEngine):
|
|
"""This is a custom script processor that can be easily injected into Spiff Workflow.
|
|
Rather than execute arbitrary code, this assumes the script references a fully qualified python class
|
|
such as myapp.RandomFact. """
|
|
|
|
def execute(self, task: SpiffTask, script, **kwargs):
|
|
"""
|
|
Assume that the script read in from the BPMN file is a fully qualified python class. Instantiate
|
|
that class, pass in any data available to the current task so that it might act on it.
|
|
Assume that the class implements the "do_task" method.
|
|
|
|
This allows us to reference custom code from the BPMN diagram.
|
|
"""
|
|
commands = script.split(" ")
|
|
path_and_command = commands[0].rsplit(".", 1)
|
|
if len(path_and_command) == 1:
|
|
module_name = "crc.scripts." + self.camel_to_snake(path_and_command[0])
|
|
class_name = path_and_command[0]
|
|
else:
|
|
module_name = "crc.scripts." + path_and_command[0] + "." + self.camel_to_snake(path_and_command[1])
|
|
class_name = path_and_command[1]
|
|
try:
|
|
mod = __import__(module_name, fromlist=[class_name])
|
|
klass = getattr(mod, class_name)
|
|
study_id = task.workflow.data[WorkflowProcessor.STUDY_ID_KEY]
|
|
if not isinstance(klass(), Script):
|
|
raise ApiError.from_task("invalid_script",
|
|
"This is an internal error. The script '%s:%s' you called " %
|
|
(module_name, class_name) +
|
|
"does not properly implement the CRC Script class.",
|
|
task=task)
|
|
if task.workflow.data[WorkflowProcessor.VALIDATION_PROCESS_KEY]:
|
|
"""If this is running a validation, and not a normal process, then we want to
|
|
mimic running the script, but not make any external calls or database changes."""
|
|
klass().do_task_validate_only(task, study_id, *commands[1:])
|
|
else:
|
|
klass().do_task(task, study_id, *commands[1:])
|
|
except ModuleNotFoundError:
|
|
raise ApiError.from_task("invalid_script",
|
|
"Unable to locate Script: '%s:%s'" % (module_name, class_name),
|
|
task=task)
|
|
|
|
@staticmethod
|
|
def camel_to_snake(camel):
|
|
camel = camel.strip()
|
|
return re.sub(r'(?<!^)(?=[A-Z])', '_', camel).lower()
|
|
|
|
|
|
class MyCustomParser(BpmnDmnParser):
|
|
"""
|
|
A BPMN and DMN parser that can also parse Camunda forms.
|
|
"""
|
|
OVERRIDE_PARSER_CLASSES = BpmnDmnParser.OVERRIDE_PARSER_CLASSES
|
|
OVERRIDE_PARSER_CLASSES.update(CamundaParser.OVERRIDE_PARSER_CLASSES)
|
|
|
|
|
|
class WorkflowProcessor(object):
|
|
_script_engine = CustomBpmnScriptEngine()
|
|
_serializer = BpmnSerializer()
|
|
|
|
WORKFLOW_ID_KEY = "workflow_id"
|
|
STUDY_ID_KEY = "study_id"
|
|
VALIDATION_PROCESS_KEY = "validate_only"
|
|
|
|
def __init__(self, workflow_model: WorkflowModel, soft_reset=False, hard_reset=False):
|
|
"""Create a Workflow Processor based on the serialized information available in the workflow model.
|
|
If soft_reset is set to true, it will try to use the latest version of the workflow specification.
|
|
If hard_reset is set to true, it will create a new Workflow, but embed the data from the last
|
|
completed task in the previous workflow.
|
|
If neither flag is set, it will use the same version of the specification that was used to originally
|
|
create the workflow model. """
|
|
self.workflow_model = workflow_model
|
|
orig_version = workflow_model.spec_version
|
|
if soft_reset or workflow_model.spec_version is None:
|
|
self.workflow_model.spec_version = WorkflowProcessor.get_latest_version_string(
|
|
workflow_model.workflow_spec_id)
|
|
|
|
spec = self.get_spec(workflow_model.workflow_spec_id, workflow_model.spec_version)
|
|
self.workflow_spec_id = workflow_model.workflow_spec_id
|
|
try:
|
|
self.bpmn_workflow = self.__get_bpmn_workflow(workflow_model, spec)
|
|
self.bpmn_workflow.script_engine = self._script_engine
|
|
|
|
if not self.WORKFLOW_ID_KEY in self.bpmn_workflow.data:
|
|
if not workflow_model.id:
|
|
session.add(workflow_model)
|
|
session.commit()
|
|
# If the model is new, and has no id, save it, write it into the workflow model
|
|
# and save it again. In this way, the workflow process is always aware of the
|
|
# database model to which it is associated, and scripts running within the model
|
|
# can then load data as needed.
|
|
self.bpmn_workflow.data[WorkflowProcessor.WORKFLOW_ID_KEY] = workflow_model.id
|
|
workflow_model.bpmn_workflow_json = WorkflowProcessor._serializer.serialize_workflow(self.bpmn_workflow)
|
|
self.save()
|
|
|
|
except KeyError as ke:
|
|
if soft_reset:
|
|
# Undo the soft-reset.
|
|
workflow_model.spec_version = orig_version
|
|
raise ApiError(code="unexpected_workflow_structure",
|
|
message="Failed to deserialize workflow"
|
|
" '%s' version %s, due to a mis-placed or missing task '%s'" %
|
|
(self.workflow_spec_id, workflow_model.spec_version, str(ke)) +
|
|
" This is very likely due to a soft reset where there was a structural change.")
|
|
if hard_reset:
|
|
# Now that the spec is loaded, get the data and rebuild the bpmn with the new details
|
|
workflow_model.spec_version = self.hard_reset()
|
|
workflow_model.bpmn_workflow_json = WorkflowProcessor._serializer.serialize_workflow(self.bpmn_workflow)
|
|
self.save()
|
|
|
|
def __get_bpmn_workflow(self, workflow_model: WorkflowModel, spec: WorkflowSpec):
|
|
|
|
if workflow_model.bpmn_workflow_json:
|
|
bpmn_workflow = self._serializer.deserialize_workflow(workflow_model.bpmn_workflow_json, workflow_spec=spec)
|
|
else:
|
|
bpmn_workflow = BpmnWorkflow(spec, script_engine=self._script_engine)
|
|
bpmn_workflow.data[WorkflowProcessor.STUDY_ID_KEY] = workflow_model.study_id
|
|
bpmn_workflow.data[WorkflowProcessor.VALIDATION_PROCESS_KEY] = False
|
|
bpmn_workflow.do_engine_steps()
|
|
return bpmn_workflow
|
|
|
|
def save(self):
|
|
"""Saves the current state of this processor to the database """
|
|
workflow_model = self.workflow_model
|
|
workflow_model.bpmn_workflow_json = self.serialize()
|
|
complete_states = [SpiffTask.CANCELLED, SpiffTask.COMPLETED]
|
|
tasks = list(self.get_all_user_tasks())
|
|
workflow_model.status = self.get_status()
|
|
workflow_model.total_tasks = len(tasks)
|
|
workflow_model.completed_tasks = sum(1 for t in tasks if t.state in complete_states)
|
|
workflow_model.last_updated = datetime.now()
|
|
session.add(workflow_model)
|
|
session.commit()
|
|
|
|
@staticmethod
|
|
def run_master_spec(spec_model, study):
|
|
"""Executes a BPMN specification for the given study, without recording any information to the database
|
|
Useful for running the master specification, which should not persist. """
|
|
version = WorkflowProcessor.get_latest_version_string(spec_model.id)
|
|
spec = WorkflowProcessor.get_spec(spec_model.id, version)
|
|
bpmn_workflow = BpmnWorkflow(spec, script_engine=WorkflowProcessor._script_engine)
|
|
bpmn_workflow.data[WorkflowProcessor.STUDY_ID_KEY] = study.id
|
|
bpmn_workflow.data[WorkflowProcessor.VALIDATION_PROCESS_KEY] = False
|
|
bpmn_workflow.do_engine_steps()
|
|
if not bpmn_workflow.is_completed():
|
|
raise ApiError("master_spec_not_automatic",
|
|
"The master spec should only contain fully automated tasks, it failed to complete.")
|
|
|
|
return bpmn_workflow.last_task.data
|
|
|
|
@staticmethod
|
|
def get_parser():
|
|
parser = MyCustomParser()
|
|
return parser
|
|
|
|
@staticmethod
|
|
def get_latest_version_string(workflow_spec_id):
|
|
"""Version is in the format v[VERSION] (FILE_ID_LIST)
|
|
For example, a single bpmn file with only one version would be
|
|
v1 (12) Where 12 is the id of the file data model that is used to create the
|
|
specification. If multiple files exist, they are added on in
|
|
dot notation to both the version number and the file list. So
|
|
a Spec that includes a BPMN, DMN, an a Word file all on the first
|
|
version would be v1.1.1 (12.45.21)"""
|
|
|
|
# this could potentially become expensive to load all the data in the data models.
|
|
# in which case we might consider using a deferred loader for the actual data, but
|
|
# trying not to pre-optimize.
|
|
file_data_models = WorkflowProcessor.__get_latest_file_models(workflow_spec_id)
|
|
major_version = 0 # The version of the primary file.
|
|
minor_version = [] # The versions of the minor files if any.
|
|
file_ids = []
|
|
for file_data in file_data_models:
|
|
file_ids.append(file_data.id)
|
|
if file_data.file_model.primary:
|
|
major_version = file_data.version
|
|
else:
|
|
minor_version.append(file_data.version)
|
|
minor_version.insert(0, major_version) # Add major version to beginning.
|
|
version = ".".join(str(x) for x in minor_version)
|
|
files = ".".join(str(x) for x in file_ids)
|
|
full_version = "v%s (%s)" % (version, files)
|
|
return full_version
|
|
|
|
@staticmethod
|
|
def __get_file_models_for_version(workflow_spec_id, version):
|
|
file_id_strings = re.findall('\((.*)\)', version)[0].split(".")
|
|
file_ids = [int(i) for i in file_id_strings]
|
|
files = session.query(FileDataModel)\
|
|
.join(FileModel) \
|
|
.filter(FileModel.workflow_spec_id == workflow_spec_id)\
|
|
.filter(FileDataModel.id.in_(file_ids)).all()
|
|
if len(files) != len(file_ids):
|
|
raise ApiError("invalid_version",
|
|
"The version '%s' of workflow specification '%s' is invalid. " %
|
|
(version, workflow_spec_id) +
|
|
" Unable to locate the correct files to recreate it.")
|
|
return files
|
|
|
|
@staticmethod
|
|
def __get_latest_file_models(workflow_spec_id):
|
|
"""Returns all the latest files related to a workflow specification"""
|
|
return session.query(FileDataModel) \
|
|
.join(FileModel) \
|
|
.filter(FileModel.workflow_spec_id == workflow_spec_id)\
|
|
.filter(FileDataModel.version == FileModel.latest_version)\
|
|
.order_by(FileModel.id)\
|
|
.all()
|
|
|
|
@staticmethod
|
|
def get_spec(workflow_spec_id, version):
|
|
"""Returns the requested version of the specification,
|
|
or the lastest version if none is specified."""
|
|
parser = WorkflowProcessor.get_parser()
|
|
process_id = None
|
|
file_data_models = WorkflowProcessor.__get_file_models_for_version(workflow_spec_id, version)
|
|
for file_data in file_data_models:
|
|
if file_data.file_model.type == FileType.bpmn:
|
|
bpmn: ElementTree.Element = ElementTree.fromstring(file_data.data)
|
|
if file_data.file_model.primary:
|
|
process_id = WorkflowProcessor.get_process_id(bpmn)
|
|
parser.add_bpmn_xml(bpmn, filename=file_data.file_model.name)
|
|
elif file_data.file_model.type == FileType.dmn:
|
|
dmn: ElementTree.Element = ElementTree.fromstring(file_data.data)
|
|
parser.add_dmn_xml(dmn, filename=file_data.file_model.name)
|
|
if process_id is None:
|
|
raise(ApiError(code="no_primary_bpmn_error",
|
|
message="There is no primary BPMN model defined for workflow %s" % workflow_spec_id))
|
|
try:
|
|
spec = parser.get_spec(process_id)
|
|
except ValidationException as ve:
|
|
raise ApiError(code="workflow_validation_error",
|
|
message="Failed to parse Workflow Specification '%s' %s." % (workflow_spec_id, version) +
|
|
"Error is %s" % str(ve),
|
|
file_name=ve.filename,
|
|
task_id=ve.id,
|
|
tag=ve.tag)
|
|
return spec
|
|
|
|
|
|
|
|
@staticmethod
|
|
def populate_form_with_random_data(task, task_api):
|
|
"""populates a task with random data - useful for testing a spec."""
|
|
|
|
if not hasattr(task.task_spec, 'form'): return
|
|
|
|
form_data = {}
|
|
for field in task_api.form.fields:
|
|
if field.type == "enum":
|
|
if len(field.options) > 0:
|
|
form_data[field.id] = random.choice(field.options)
|
|
else:
|
|
raise ApiError.from_task("invalid_enum", "You specified an enumeration field (%s),"
|
|
" with no options" % field.id,
|
|
task)
|
|
elif field.type == "long":
|
|
form_data[field.id] = random.randint(1, 1000)
|
|
elif field.type == 'boolean':
|
|
form_data[field.id] = random.choice([True, False])
|
|
else:
|
|
form_data[field.id] = WorkflowProcessor._random_string()
|
|
if task.data is None:
|
|
task.data = {}
|
|
task.data.update(form_data)
|
|
|
|
@staticmethod
|
|
def _random_string(string_length=10):
|
|
"""Generate a random string of fixed length """
|
|
letters = string.ascii_lowercase
|
|
return ''.join(random.choice(letters) for i in range(string_length))
|
|
|
|
@staticmethod
|
|
def status_of(bpmn_workflow):
|
|
if bpmn_workflow.is_completed():
|
|
return WorkflowStatus.complete
|
|
user_tasks = bpmn_workflow.get_ready_user_tasks()
|
|
if len(user_tasks) > 0:
|
|
return WorkflowStatus.user_input_required
|
|
else:
|
|
return WorkflowStatus.waiting
|
|
|
|
def hard_reset(self):
|
|
"""Recreate this workflow, but keep the data from the last completed task and add it back into the first task.
|
|
This may be useful when a workflow specification changes, and users need to review all the
|
|
prior steps, but don't need to reenter all the previous data.
|
|
|
|
Returns the new version.
|
|
"""
|
|
version = WorkflowProcessor.get_latest_version_string(self.workflow_spec_id)
|
|
spec = WorkflowProcessor.get_spec(self.workflow_spec_id, version)
|
|
bpmn_workflow = BpmnWorkflow(spec, script_engine=self._script_engine)
|
|
bpmn_workflow.data = self.bpmn_workflow.data
|
|
for task in bpmn_workflow.get_tasks(SpiffTask.READY):
|
|
task.data = self.bpmn_workflow.last_task.data
|
|
bpmn_workflow.do_engine_steps()
|
|
self.bpmn_workflow = bpmn_workflow
|
|
return version
|
|
|
|
def get_status(self):
|
|
return self.status_of(self.bpmn_workflow)
|
|
|
|
def get_spec_version(self):
|
|
return self.workflow_model.spec_version
|
|
|
|
def do_engine_steps(self):
|
|
try:
|
|
self.bpmn_workflow.do_engine_steps()
|
|
except WorkflowTaskExecException as we:
|
|
raise ApiError.from_task("task_error", str(we), we.task)
|
|
|
|
def serialize(self):
|
|
return self._serializer.serialize_workflow(self.bpmn_workflow)
|
|
|
|
def next_user_tasks(self):
|
|
return self.bpmn_workflow.get_ready_user_tasks()
|
|
|
|
def next_task(self):
|
|
"""Returns the next task that should be completed
|
|
even if there are parallel tasks and multiple options are
|
|
available.
|
|
If the workflow is complete
|
|
it will return the final end task.
|
|
"""
|
|
|
|
# If the whole blessed mess is done, return the end_event task in the tree
|
|
if self.bpmn_workflow.is_completed():
|
|
for task in SpiffTask.Iterator(self.bpmn_workflow.task_tree, SpiffTask.ANY_MASK):
|
|
if isinstance(task.task_spec, EndEvent):
|
|
return task
|
|
|
|
# If there are ready tasks to complete, return the next ready task, but return the one
|
|
# in the active parallel path if possible.
|
|
ready_tasks = self.bpmn_workflow.get_tasks(SpiffTask.READY)
|
|
if len(ready_tasks) > 0:
|
|
for task in ready_tasks:
|
|
if task.parent == self.bpmn_workflow.last_task:
|
|
return task
|
|
return ready_tasks[0]
|
|
|
|
# If there are no ready tasks, but the thing isn't complete yet, find the first non-complete task
|
|
# and return that
|
|
next_task = None
|
|
for task in SpiffTask.Iterator(self.bpmn_workflow.task_tree, SpiffTask.NOT_FINISHED_MASK):
|
|
next_task = task
|
|
return next_task
|
|
|
|
def previous_task(self):
|
|
return None
|
|
|
|
def complete_task(self, task):
|
|
self.bpmn_workflow.complete_task_from_id(task.id)
|
|
|
|
def get_data(self):
|
|
return self.bpmn_workflow.data
|
|
|
|
def get_workflow_id(self):
|
|
return self.workflow_model.id
|
|
|
|
def get_study_id(self):
|
|
return self.bpmn_workflow.data[self.STUDY_ID_KEY]
|
|
|
|
def get_ready_user_tasks(self):
|
|
return self.bpmn_workflow.get_ready_user_tasks()
|
|
|
|
def get_all_user_tasks(self):
|
|
all_tasks = self.bpmn_workflow.get_tasks(SpiffTask.ANY_MASK)
|
|
return [t for t in all_tasks if not self.bpmn_workflow._is_engine_task(t.task_spec)]
|
|
|
|
def get_all_completed_tasks(self):
|
|
all_tasks = self.bpmn_workflow.get_tasks(SpiffTask.ANY_MASK)
|
|
return [t for t in all_tasks
|
|
if not self.bpmn_workflow._is_engine_task(t.task_spec) and t.state in [t.COMPLETED, t.CANCELLED]]
|
|
|
|
@staticmethod
|
|
def get_process_id(et_root: ElementTree.Element):
|
|
process_elements = []
|
|
for child in et_root:
|
|
if child.tag.endswith('process') and child.attrib.get('isExecutable', False):
|
|
process_elements.append(child)
|
|
|
|
if len(process_elements) == 0:
|
|
raise ValidationException('No executable process tag found')
|
|
|
|
# There are multiple root elements
|
|
if len(process_elements) > 1:
|
|
|
|
# Look for the element that has the startEvent in it
|
|
for e in process_elements:
|
|
this_element: ElementTree.Element = e
|
|
for child_element in list(this_element):
|
|
if child_element.tag.endswith('startEvent'):
|
|
return this_element.attrib['id']
|
|
|
|
raise ValidationException('No start event found in %s' % et_root.attrib['id'])
|
|
|
|
return process_elements[0].attrib['id']
|
|
|
|
|
|
|