cr-connect-workflow/crc/services/lookup_service.py
Dan 4ec6e403f5 1. Created a UserFileService, so it's clear what we use when for File Services, UserFiles, SpecFiles, and ReferenceFiles each function differently.
2. Reference Files and Spec Files are written to disk, they do not exist in the database at all.
2022-02-02 12:59:56 -05:00

256 lines
13 KiB
Python

import logging
import re
from collections import OrderedDict
from zipfile import BadZipFile
import pandas as pd
from pandas import ExcelFile
from pandas._libs.missing import NA
from sqlalchemy import desc
from sqlalchemy.sql.functions import GenericFunction
from crc import db
from crc.api.common import ApiError
from crc.models.api_models import Task
from crc.models.file import LookupFileModel, LookupDataModel
from crc.models.ldap import LdapSchema
from crc.models.workflow import WorkflowModel
from crc.services.spec_file_service import SpecFileService
from crc.services.reference_file_service import ReferenceFileService
from crc.services.ldap_service import LdapService
from crc.services.workflow_processor import WorkflowProcessor
class TSRank(GenericFunction):
package = 'full_text'
name = 'ts_rank'
class LookupService(object):
"""Provides tools for doing lookups for auto-complete fields, and rapid access to any
uploaded spreadsheets.
This can currently take three forms:
1) Lookup from spreadsheet data associated with a workflow specification.
in which case we store the spreadsheet data in a lookup table with full
text indexing enabled, and run searches against that table.
2) Lookup from spreadsheet data associated with a specific file. This allows us
to get a lookup model for a specific file object, such as a reference file.
2) Lookup from LDAP records. In which case we call out to an external service
to pull back detailed records and return them.
I could imagine this growing to include other external services as tools to handle
lookup fields. I could also imagine using some sort of local cache so we don't
unnecessarily pound on external services for repeat searches for the same records.
"""
@staticmethod
def get_lookup_model(spiff_task, field):
workflow_id = spiff_task.workflow.data[WorkflowProcessor.WORKFLOW_ID_KEY]
workflow = db.session.query(WorkflowModel).filter(WorkflowModel.id == workflow_id).first()
return LookupService.__get_lookup_model(workflow, spiff_task.task_spec.name, field.id)
@staticmethod
def get_lookup_model_for_reference(file_name, value_column, label_column):
lookup_model = db.session.query(LookupFileModel).\
filter(LookupFileModel.file_name == file_name). \
filter(LookupFileModel.workflow_spec_id is None).\
first()
if not lookup_model:
logging.warning("!!!! Making a very expensive call to update the lookup model.")
file_data = ReferenceFileService().get_data(file_name)
lookup_model = LookupService.build_lookup_table(file_name, file_data, value_column, label_column)
return lookup_model
@staticmethod
def __get_lookup_model(workflow, task_spec_id, field_id):
lookup_model = db.session.query(LookupFileModel) \
.filter(LookupFileModel.workflow_spec_id == workflow.workflow_spec_id) \
.filter(LookupFileModel.field_id == field_id) \
.filter(LookupFileModel.task_spec_id == task_spec_id) \
.order_by(desc(LookupFileModel.id)).first()
# The above may return a model, if it does, it might still be out of date.
# We need to check the file date to assure we have the most recent file.
is_current = False
if lookup_model:
if lookup_model.is_ldap: # LDAP is always current
is_current = True
else:
current_date = SpecFileService.last_modified(workflow.workflow_spec, lookup_model.file_name)
is_current = current_date == lookup_model.last_updated
if not is_current:
# Very very very expensive, but we don't know need this till we do.
logging.warning("!!!! Making a very expensive call to update the lookup models.")
lookup_model = LookupService.create_lookup_model(workflow, task_spec_id, field_id)
return lookup_model
@staticmethod
def lookup(workflow, task_spec_id, field_id, query, value=None, limit=10):
# Returns a list of dictionaries
lookup_model = LookupService.__get_lookup_model(workflow, task_spec_id, field_id)
if lookup_model.is_ldap:
return LookupService._run_ldap_query(query, value, limit)
else:
return LookupService._run_lookup_query(lookup_model, query, value, limit)
@staticmethod
def create_lookup_model(workflow_model, task_spec_id, field_id):
"""
This is all really expensive, but should happen just once (per file change).
Checks to see if the options are provided in a separate lookup table associated with the workflow, and if so,
assures that data exists in the database, and return a model than can be used to locate that data.
Returns: an array of LookupData, suitable for returning to the API.
"""
processor = WorkflowProcessor(workflow_model) # VERY expensive, Ludicrous for lookup / type ahead
spec, field = processor.find_spec_and_field(task_spec_id, field_id)
# Clear out all existing lookup models for this workflow and field.
existing_models = db.session.query(LookupFileModel) \
.filter(LookupFileModel.workflow_spec_id == workflow_model.workflow_spec_id) \
.filter(LookupFileModel.task_spec_id == task_spec_id) \
.filter(LookupFileModel.field_id == field_id).all()
for model in existing_models: # Do it one at a time to cause the required cascade of deletes.
db.session.delete(model)
# Use the contents of a file to populate enum field options
if field.has_property(Task.FIELD_PROP_SPREADSHEET_NAME):
if not (field.has_property(Task.FIELD_PROP_VALUE_COLUMN) or
field.has_property(Task.FIELD_PROP_LABEL_COLUMN)):
raise ApiError.from_task_spec("invalid_enum",
"For enumerations based on an xls file, you must include 3 properties: %s, "
"%s, and %s" % (Task.FIELD_PROP_SPREADSHEET_NAME,
Task.FIELD_PROP_VALUE_COLUMN,
Task.FIELD_PROP_LABEL_COLUMN),
task_spec=spec)
# Get the file data from the File Service
file_name = field.get_property(Task.FIELD_PROP_SPREADSHEET_NAME)
value_column = field.get_property(Task.FIELD_PROP_VALUE_COLUMN)
label_column = field.get_property(Task.FIELD_PROP_LABEL_COLUMN)
latest_files = SpecFileService().get_files(workflow_model.workflow_spec, file_name=file_name)
if len(latest_files) < 1:
raise ApiError("invalid_enum", "Unable to locate the lookup data file '%s'" % file_name)
else:
file = latest_files[0]
workflow_spec = processor.workflow_model.workflow_spec
file_data = SpecFileService().get_data(workflow_spec, file_name)
lookup_model = LookupService.build_lookup_table(file_name, file_data, value_column, label_column,
workflow_model.workflow_spec_id, task_spec_id, field_id)
# Use the results of an LDAP request to populate enum field options
elif field.has_property(Task.FIELD_PROP_LDAP_LOOKUP):
lookup_model = LookupFileModel(workflow_spec_id=workflow_model.workflow_spec_id,
task_spec_id=task_spec_id,
field_id=field_id,
is_ldap=True)
else:
raise ApiError.from_task_spec("unknown_lookup_option",
"Lookup supports using spreadsheet or LDAP options, "
"and neither of those was provided.", spec)
db.session.add(lookup_model)
db.session.commit()
return lookup_model
@staticmethod
def build_lookup_table(file_name, file_data, value_column, label_column,
workflow_spec_id=None, task_spec_id=None, field_id=None):
""" In some cases the lookup table can be very large. This method will add all values to the database
in a way that can be searched and returned via an api call - rather than sending the full set of
options along with the form. It will only open the file and process the options if something has
changed. """
try:
xlsx = ExcelFile(file_data, engine='openpyxl')
# Pandas--or at least openpyxl, cannot read old xls files.
# The error comes back as zipfile.BadZipFile because xlsx files are zipped xml files
except BadZipFile:
raise ApiError(code='excel_error',
message=f"Error opening excel file {file_name}. You may have an older .xls spreadsheet. (workflow_spec_id: {workflow_spec_id}, task_spec_id: {task_spec_id}, and field_id: {field_id})")
df = xlsx.parse(xlsx.sheet_names[0]) # Currently we only look at the fist sheet.
df = df.convert_dtypes()
df = df.loc[:, ~df.columns.str.contains('^Unnamed')] # Drop unnamed columns.
df = pd.DataFrame(df).dropna(how='all') # Drop null rows
for (column_name, column_data) in df.iteritems():
type = df.dtypes[column_name].name
if type == 'string':
df[column_name] = df[column_name].fillna('')
else:
df[column_name] = df[column_name].fillna(0)
if value_column not in df:
raise ApiError("invalid_enum",
"The file %s does not contain a column named % s" % (file_name,
value_column))
if label_column not in df:
raise ApiError("invalid_enum",
"The file %s does not contain a column named % s" % (file_name,
label_column))
lookup_model = LookupFileModel(workflow_spec_id=workflow_spec_id,
field_id=field_id,
task_spec_id=task_spec_id,
file_name=file_name,
is_ldap=False)
db.session.add(lookup_model)
for index, row in df.iterrows():
lookup_data = LookupDataModel(lookup_file_model=lookup_model,
value=row[value_column],
label=row[label_column],
data=row.to_dict(OrderedDict))
db.session.add(lookup_data)
db.session.commit()
return lookup_model
@staticmethod
def _run_lookup_query(lookup_file_model, query, value, limit):
db_query = LookupDataModel.query.filter(LookupDataModel.lookup_file_model == lookup_file_model)
if value is not None: # Then just find the model with that value
db_query = db_query.filter(LookupDataModel.value == str(value))
else:
# Build a full text query that takes all the terms provided and executes each term as a prefix query, and
# OR's those queries together. The order of the results is handled as a standard "Like" on the original
# string which seems to work intuitively for most entries.
query = re.sub('[^A-Za-z0-9 ]+', '', query) # Strip out non ascii characters.
query = re.sub(r'\s+', ' ', query) # Convert multiple space like characters to just one space, as we split on spaces.
print("Query: " + query)
query = query.strip()
if len(query) > 0:
if ' ' in query:
terms = query.split(' ')
new_terms = []
for t in terms:
new_terms.append("%s:*" % t)
new_query = ' & '.join(new_terms)
new_query = "'%s' | %s" % (query, new_query)
else:
new_query = "%s:*" % query
db_query = db_query.filter(
LookupDataModel.__ts_vector__.match(new_query, postgresql_regconfig='simple'))
# Hackishly order by like, which does a good job of pulling more relevant matches to the top.
db_query = db_query.order_by(desc(LookupDataModel.label.like("%" + query + "%")))
logging.getLogger('sqlalchemy.engine').setLevel(logging.INFO)
logging.info(db_query)
result = db_query.limit(limit).all()
logging.getLogger('sqlalchemy.engine').setLevel(logging.ERROR)
result_data = list(map(lambda lookup_item: lookup_item.data, result))
return result_data
@staticmethod
def _run_ldap_query(query, value, limit):
if value:
return [LdapSchema().dump(LdapService.user_info(value))]
else:
users = LdapService.search_users(query, limit)
return users