import hashlib import json import pandas as pd import requests from crc import session, app from crc.api.common import ApiError from crc.models.file import FileModel, FileDataModel from crc.models.workflow import WorkflowSpecModel, WorkflowSpecCategoryModel from crc.services.file_service import FileService from crc.services.workflow_sync import WorkflowSyncService from crc.api.workflow import get_workflow_specification def get_sync_workflow_specification(workflow_spec_id): return get_workflow_specification(workflow_spec_id) def join_uuids(uuids): """Joins a pandas Series of uuids and combines them in one hash""" combined_uuids = ''.join([str(uuid) for uuid in uuids.sort_values()]) # ensure that values are always # in the same order return hashlib.md5(combined_uuids.encode('utf8')).hexdigest() # make a hash of the hashes def verify_token(token, required_scopes): if token == app.config['API_TOKEN']: return {'scope':['any']} else: raise ApiError("permission_denied", "API Token information is not correct") def get_changed_workflows(remote,as_df=False): """ gets a remote endpoint - gets the workflows and then determines what workflows are different from the remote endpoint """ remote_workflows_list = WorkflowSyncService.get_all_remote_workflows(remote) remote_workflows = pd.DataFrame(remote_workflows_list) # get the local thumbprints & make sure that 'workflow_spec_id' is a column, not an index local = get_all_spec_state_dataframe().reset_index() # merge these on workflow spec id and hash - this will # make two different date columns date_x and date_y different = remote_workflows.merge(local, right_on=['workflow_spec_id','md5_hash'], left_on=['workflow_spec_id','md5_hash'], how = 'outer' , indicator=True).loc[lambda x : x['_merge']!='both'] if len(different)==0: return [] # each line has a tag on it - if was in the left or the right, # label it so we know if that was on the remote or local machine different.loc[different['_merge']=='left_only','location'] = 'remote' different.loc[different['_merge']=='right_only','location'] = 'local' # this takes the different date_created_x and date-created_y columns and # combines them back into one date_created column index = different['date_created_x'].isnull() different.loc[index,'date_created_x'] = different[index]['date_created_y'] different = different[['workflow_spec_id','date_created_x','location']].copy() different.columns=['workflow_spec_id','date_created','location'] # our different list will have multiple entries for a workflow if there is a version on either side # we want to grab the most recent one, so we sort and grab the most recent one for each workflow changedfiles = different.sort_values('date_created',ascending=False).groupby('workflow_spec_id').first() # get an exclusive or list of workflow ids - that is we want lists of files that are # on one machine or the other, but not both remote_spec_ids = remote_workflows[['workflow_spec_id']] local_spec_ids = local[['workflow_spec_id']] left = remote_spec_ids[~remote_spec_ids['workflow_spec_id'].isin(local_spec_ids['workflow_spec_id'])] right = local_spec_ids[~local_spec_ids['workflow_spec_id'].isin(remote_spec_ids['workflow_spec_id'])] # flag files as new that are only on the remote box and remove the files that are only on the local box changedfiles['new'] = False changedfiles.loc[changedfiles.index.isin(left['workflow_spec_id']), 'new'] = True output = changedfiles[~changedfiles.index.isin(right['workflow_spec_id'])] # return the list as a dict, let swagger convert it to json if as_df: return output else: return output.reset_index().to_dict(orient='records') def sync_all_changed_workflows(remote): workflowsdf = get_changed_workflows(remote,as_df=True) if len(workflowsdf) ==0: return [] workflows = workflowsdf.reset_index().to_dict(orient='records') for workflow in workflows: sync_changed_files(remote,workflow['workflow_spec_id']) return [x['workflow_spec_id'] for x in workflows] def sync_changed_files(remote,workflow_spec_id): # make sure that spec is local before syncing files specdict = WorkflowSyncService.get_remote_workflow_spec(remote,workflow_spec_id) localspec = session.query(WorkflowSpecModel).filter(WorkflowSpecModel.id == workflow_spec_id).first() if localspec is None: localspec = WorkflowSpecModel() localspec.id = workflow_spec_id if specdict['category'] == None: localspec.category = None else: localcategory = session.query(WorkflowSpecCategoryModel).filter(WorkflowSpecCategoryModel.name == specdict['category']['name']).first() if localcategory == None: #category doesn't exist - lets make it localcategory = WorkflowSpecCategoryModel() localcategory.name = specdict['category']['name'] localcategory.display_name = specdict['category']['display_name'] localcategory.display_order = specdict['category']['display_order'] session.add(localcategory) localspec.category = localcategory localspec.display_order = specdict['display_order'] localspec.display_name = specdict['display_name'] localspec.name = specdict['name'] localspec.description = specdict['description'] session.add(localspec) changedfiles = get_changed_files(remote,workflow_spec_id,as_df=True) if len(changedfiles)==0: return [] updatefiles = changedfiles[~((changedfiles['new']==True) & (changedfiles['location']=='local'))] updatefiles = updatefiles.reset_index().to_dict(orient='records') deletefiles = changedfiles[((changedfiles['new']==True) & (changedfiles['location']=='local'))] deletefiles = deletefiles.reset_index().to_dict(orient='records') for delfile in deletefiles: currentfile = session.query(FileModel).filter(FileModel.workflow_spec_id==workflow_spec_id, FileModel.name == delfile['filename']).first() # it is more appropriate to archive the file than delete # due to the fact that we might have workflows that are using the # file data currentfile.archived = True session.add(currentfile) for updatefile in updatefiles: currentfile = session.query(FileModel).filter(FileModel.workflow_spec_id==workflow_spec_id, FileModel.name == updatefile['filename']).first() if not currentfile: currentfile = FileModel() currentfile.name = updatefile['filename'] currentfile.workflow_spec_id = workflow_spec_id currentfile.date_created = updatefile['date_created'] currentfile.type = updatefile['type'] currentfile.primary = updatefile['primary'] currentfile.content_type = updatefile['content_type'] currentfile.primary_process_id = updatefile['primary_process_id'] session.add(currentfile) content = WorkflowSyncService.get_remote_file_by_hash(remote,updatefile['md5_hash']) FileService.update_file(currentfile,content,updatefile['type']) session.commit() return [x['filename'] for x in updatefiles] def get_changed_files(remote,workflow_spec_id,as_df=False): """ gets a remote endpoint - gets the files for a workflow_spec on both local and remote and determines what files have been change and returns a list of those files """ remote_file_list = WorkflowSyncService.get_remote_workflow_spec_files(remote,workflow_spec_id) remote_files = pd.DataFrame(remote_file_list) # get the local thumbprints & make sure that 'workflow_spec_id' is a column, not an index local = get_workflow_spec_files_dataframe(workflow_spec_id).reset_index() local['md5_hash'] = local['md5_hash'].astype('str') remote_files['md5_hash'] = remote_files['md5_hash'].astype('str') different = remote_files.merge(local, right_on=['filename','md5_hash'], left_on=['filename','md5_hash'], how = 'outer' , indicator=True).loc[lambda x : x['_merge']!='both'] if len(different) == 0: if as_df: return different else: return [] # each line has a tag on it - if was in the left or the right, # label it so we know if that was on the remote or local machine different.loc[different['_merge']=='left_only','location'] = 'remote' different.loc[different['_merge']=='right_only','location'] = 'local' # this takes the different date_created_x and date-created_y columns and # combines them back into one date_created column dualfields = ['date_created','type','primary','content_type','primary_process_id'] for merge in dualfields: index = different[merge+'_x'].isnull() different.loc[index,merge+'_x'] = different[index][merge+'_y'] fieldlist = [fld+'_x' for fld in dualfields] different = different[ fieldlist + ['md5_hash','filename','location']].copy() different.columns=dualfields+['md5_hash','filename','location'] # our different list will have multiple entries for a workflow if there is a version on either side # we want to grab the most recent one, so we sort and grab the most recent one for each workflow changedfiles = different.sort_values('date_created',ascending=False).groupby('filename').first() # get an exclusive or list of workflow ids - that is we want lists of files that are # on one machine or the other, but not both remote_spec_ids = remote_files[['filename']] local_spec_ids = local[['filename']] left = remote_spec_ids[~remote_spec_ids['filename'].isin(local_spec_ids['filename'])] right = local_spec_ids[~local_spec_ids['filename'].isin(remote_spec_ids['filename'])] changedfiles['new'] = False changedfiles.loc[changedfiles.index.isin(left['filename']), 'new'] = True changedfiles.loc[changedfiles.index.isin(right['filename']),'new'] = True changedfiles = changedfiles.replace({pd.np.nan: None}) # return the list as a dict, let swagger convert it to json if as_df: return changedfiles else: return changedfiles.reset_index().to_dict(orient='records') def get_all_spec_state(): """ Return a list of all workflow specs along with last updated date and a thumbprint of all of the files that are used for that workflow_spec Convert into a dict list from a dataframe """ df = get_all_spec_state_dataframe() return df.reset_index().to_dict(orient='records') def get_workflow_spec_files(workflow_spec_id): """ Return a list of all workflow specs along with last updated date and a thumbprint of all of the files that are used for that workflow_spec Convert into a dict list from a dataframe """ df = get_workflow_spec_files_dataframe(workflow_spec_id) return df.reset_index().to_dict(orient='records') def get_workflow_spec_files_dataframe(workflowid): """ Return a list of all files for a workflow_spec along with last updated date and a hash so we can determine file differences for a changed workflow on a box. Return a dataframe """ x = session.query(FileDataModel).join(FileModel).filter(FileModel.workflow_spec_id==workflowid) # there might be a cleaner way of getting a data frome from some of the # fields in the ORM - but this works OK filelist = [] for file in x: filelist.append({'file_model_id':file.file_model_id, 'workflow_spec_id': file.file_model.workflow_spec_id, 'md5_hash':file.md5_hash, 'filename':file.file_model.name, 'type':file.file_model.type.name, 'primary':file.file_model.primary, 'content_type':file.file_model.content_type, 'primary_process_id':file.file_model.primary_process_id, 'date_created':file.date_created}) if len(filelist) == 0: return pd.DataFrame(columns=['file_model_id', 'workflow_spec_id', 'md5_hash', 'filename', 'type', 'primary', 'content_type', 'primary_process_id', 'date_created']) df = pd.DataFrame(filelist).sort_values('date_created').groupby('file_model_id').last() df['date_created'] = df['date_created'].astype('str') return df def get_all_spec_state_dataframe(): """ Return a list of all workflow specs along with last updated date and a thumbprint of all of the files that are used for that workflow_spec Return a dataframe """ x = session.query(FileDataModel).join(FileModel) # there might be a cleaner way of getting a data frome from some of the # fields in the ORM - but this works OK filelist = [] for file in x: filelist.append({'file_model_id':file.file_model_id, 'workflow_spec_id': file.file_model.workflow_spec_id, 'md5_hash':file.md5_hash, 'filename':file.file_model.name, 'date_created':file.date_created}) df = pd.DataFrame(filelist) # get a distinct list of file_model_id's with the most recent file_data retained df = df.sort_values('date_created').drop_duplicates(['file_model_id'],keep='last').copy() # take that list and then group by workflow_spec and retain the most recently touched file # and make a consolidated hash of the md5_checksums - this acts as a 'thumbprint' for each # workflow spec df = df.groupby('workflow_spec_id').agg({'date_created':'max', 'md5_hash':join_uuids}).copy() # get only the columns we are really interested in returning df = df[['date_created','md5_hash']].copy() # convert dates to string df['date_created'] = df['date_created'].astype('str') return df