2025-02-07 11:00:29 +01:00

124 lines
5.0 KiB
Rust

// some tests for approach 2 of the tree recursion
#[cfg(test)]
mod tests {
use std::time::Instant;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, Hasher};
use plonky2::plonk::proof::{ProofWithPublicInputs};
use codex_plonky2_circuits::circuits::sample_cells::SampleCircuit;
use crate::params::{F, D, C, HF};
use codex_plonky2_circuits::recursion::circuits::sampling_inner_circuit::SamplingRecursion;
use codex_plonky2_circuits::recursion::circuits::inner_circuit::InnerCircuit;
use codex_plonky2_circuits::recursion::circuits::leaf_circuit::{LeafCircuit};
// use plonky2_poseidon2::poseidon2_hash::poseidon2::{Poseidon2, Poseidon2Hash};
use crate::gen_input::gen_testing_circuit_input;
use crate::params::Params;
use codex_plonky2_circuits::recursion::hybrid::tree_circuit::HybridTreeRecursion;
#[test]
fn test_hybrid_recursion() -> anyhow::Result<()> {
const N: usize = 2; // binary tree
const M: usize = 1; // number of proofs in leaves
const K: usize = 8;
let config = CircuitConfig::standard_recursion_config();
let mut sampling_builder = CircuitBuilder::<F, D>::new(config);
//------------ sampling inner circuit ----------------------
// Circuit that does the sampling - default input
let mut params = Params::default();
let one_circ_input = gen_testing_circuit_input::<F,D>(&params.input_params);
let samp_circ = SampleCircuit::<F,D,HF>::new(params.circuit_params);
let inner_tar = samp_circ.sample_slot_circuit_with_public_input(&mut sampling_builder)?;
// get generate a sampling proof
let mut pw = PartialWitness::<F>::new();
samp_circ.sample_slot_assign_witness(&mut pw,&inner_tar,&one_circ_input)?;
let inner_data = sampling_builder.build::<C>();
println!("sampling circuit degree bits = {:?}", inner_data.common.degree_bits());
let inner_proof = inner_data.prove(pw)?;
// ------------------- leaf --------------------
// leaf circuit that verifies the sampling proof
let inner_circ = SamplingRecursion::<F,D,HF,C>::new(Params::default().circuit_params);
let leaf_circuit = LeafCircuit::<F,D,_,M>::new(inner_circ);
// ------------- tree circuit ------------------
let mut tree = HybridTreeRecursion::<F,D,_,N,M>::new(leaf_circuit);
// prepare input
let input_proofs: Vec<ProofWithPublicInputs<F, C, D>> = (0..K)
.map(|_| {
inner_proof.clone()
})
.collect::<Vec<_>>();
// prove tree
let s = Instant::now();
let (tree_root_proof, verifier_data) = tree.prove_tree::<C,HF>(&input_proofs, inner_data.verifier_data())?;
println!("prove = {:?}", s.elapsed());
println!("num of pi = {}", tree_root_proof.public_inputs.len());
let s = Instant::now();
assert!(
verifier_data.verify(tree_root_proof.clone()).is_ok(),
"proof verification failed"
);
assert_eq!(
tree_root_proof.public_inputs[0..4].to_vec(),
get_expected_tree_root_pi_hash::<M, N>(input_proofs),
"Public input of tree_root_proof does not match the expected root hash"
);
println!("verify = {:?}", s.elapsed());
Ok(())
}
// ------------ Public Input Verification ------------
/// Recompute the expected root public input hash outside the circuit
fn get_expected_tree_root_pi_hash<const M: usize, const N:usize>(input_proofs: Vec<ProofWithPublicInputs<F, C, D>>) -> Vec<F>{
// Compute the leaf hashes
let mut current_hashes = vec![];
for chunk in input_proofs.chunks(M){
let chunk_f: Vec<F> = chunk.iter()
.flat_map(|p| p.public_inputs.iter().cloned())
.collect();
let hash = HF::hash_no_pad(&chunk_f);
current_hashes.push(hash);
}
// compute parent hashes until one root hash remains
while current_hashes.len() > 1 {
let mut next_level_hashes = Vec::new();
for chunk in current_hashes.chunks(N) {
// Ensure each chunk has exactly N elements
assert!(
chunk.len() == N,
"Number of proofs is not divisible by N"
);
// collect field elements
let chunk_f: Vec<F> = chunk.iter()
.flat_map(|h| h.elements.iter().cloned())
.collect();
// Compute Poseidon2 hash of the concatenated chunk
let hash = HF::hash_no_pad(&chunk_f);
next_level_hashes.push(hash);
}
current_hashes = next_level_hashes;
}
//the expected root hash
current_hashes[0].elements.to_vec()
}
}