2025-02-07 11:00:29 +01:00

266 lines
10 KiB
Rust

// Cyclic approach to recursion where at each cycle you verify previous proof
// and run the inner circuit -> resulting in one proof that again can be fed
// into another cyclic circle.
use plonky2::hash::hash_types::{HashOutTarget, RichField};
use plonky2::iop::target::{BoolTarget};
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget};
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2_poseidon2::poseidon2_hash::poseidon2::Poseidon2;
use crate::recursion::circuits::inner_circuit::InnerCircuit;
use plonky2::gates::noop::NoopGate;
use plonky2_field::extension::Extendable;
use crate::circuits::utils::select_hash;
use crate::error::CircuitError;
use crate::recursion::utils::conditional_verifier::{dummy_circuit};
use crate::recursion::utils::dummy_gen::DummyProofGen;
use crate::Result;
/// cyclic circuit struct
/// contains necessary data
/// note: only keeps track of latest proof not all proofs.
pub struct CyclicCircuit<
F: RichField + Extendable<D> + Poseidon2,
const D: usize,
I: InnerCircuit<F, D>,
C: GenericConfig<D, F = F>,
>{
pub layer: usize,
pub circ: I,
pub cyclic_target: CyclicCircuitTargets<F, D, I>,
pub cyclic_circuit_data: CircuitData<F, C, D>,
pub common_data: CommonCircuitData<F, D>,
pub latest_proof: Option<ProofWithPublicInputs<F, C, D>>,
}
/// targets need to be assigned for the cyclic circuit
#[derive(Clone)]
pub struct CyclicCircuitTargets<
F: RichField + Extendable<D> + Poseidon2,
const D: usize,
I: InnerCircuit<F, D>,
>{
pub inner_targets: I::Targets,
pub condition: BoolTarget,
pub inner_cyclic_proof_with_pis: ProofWithPublicInputsTarget<D>,
pub verifier_data: VerifierCircuitTarget,
}
impl<
F: RichField + Extendable<D> + Poseidon2,
const D: usize,
I: InnerCircuit<F, D>,
C: GenericConfig<D, F = F> + 'static,
> CyclicCircuit<F, D, I, C> where
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
/// builds the cyclic recursion circuit using any inner circuit I
/// return the circuit data
pub fn build_circuit<
H: AlgebraicHasher<F>,
>(
// &mut self,
inner_circuit: I
) -> Result<(Self)>{
// builder with standard recursion config
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
//build the inner circuit
let inner_t = inner_circuit.build(& mut builder, false)?;
// common data for recursion
let mut common_data = Self::common_data_for_cyclic_recursion();
// the hash of the public input
let pub_input_hash = builder.add_virtual_hash_public_input();
// verifier data for inner proofs
// TODO: make verifier data public
// let verifier_data_target = builder.add_verifier_data_public_inputs();
let verifier_data_target = builder.add_virtual_verifier_data(builder.config.fri_config.cap_height);
// common data should have same num of public input as inner proofs
common_data.num_public_inputs = builder.num_public_inputs();
// condition
let condition = builder.add_virtual_bool_target_safe();
// inner proof with public input
let inner_cyclic_proof_with_pis = builder.add_virtual_proof_with_pis(&common_data);
// get the hash of the pub input
let inner_cyclic_pis = &inner_cyclic_proof_with_pis.public_inputs;
let inner_pub_input_hash = HashOutTarget::from_vec(inner_cyclic_pis[0..4].to_vec());
// now hash the current public input
let outer_pis = I::get_pub_input_targets(&inner_t);
let outer_pi_hash = builder.hash_n_to_hash_no_pad::<H>(outer_pis);
let zero_hash = HashOutTarget::from_vec([builder.zero(); 4].to_vec());
// if leaf pad with zeros
let inner_pi_hash_or_zero_hash = select_hash(&mut builder, condition, inner_pub_input_hash, zero_hash);
// hash current public input with previous hash
let mut hash_input = vec![];
hash_input.extend_from_slice(&outer_pi_hash.elements);
hash_input.extend_from_slice(&inner_pi_hash_or_zero_hash.elements);
let outer_pi_hash = builder.hash_n_to_hash_no_pad::<H>(hash_input);
// connect this up one to `pub_input_hash`
builder.connect_hashes(pub_input_hash,outer_pi_hash);
// verify proof in-circuit
builder.verify_proof::<C>(&inner_cyclic_proof_with_pis, &verifier_data_target, &common_data);
// build the cyclic circuit
let cyclic_circuit_data = builder.build::<C>();
// assign targets
let cyc_t = CyclicCircuitTargets::<F,D,I>{
inner_targets: inner_t,
condition,
inner_cyclic_proof_with_pis,
verifier_data: verifier_data_target
};
Ok(
Self{
layer: 0,
circ: inner_circuit,
cyclic_target: cyc_t,
cyclic_circuit_data,
common_data,
latest_proof: None,
}
)
}
/// generates a proof with only one recursion layer
/// takes circuit input
pub fn prove_one_layer(
&mut self,
circ_input: &I::Input,
) -> Result<ProofWithPublicInputs<F, C, D>>{
let circ_data = &self.cyclic_circuit_data;
let cyc_targets = &self.cyclic_target;
let common_data = &self.common_data;
// assign targets
let mut pw = PartialWitness::new();
self.circ.assign_targets(&mut pw,&cyc_targets.inner_targets,&circ_input)?;
// if leaf add dummy proof
if self.layer == 0 {
pw.set_bool_target(cyc_targets.condition, false)
.map_err(|e|
CircuitError::BoolTargetAssignmentError("condition".to_string(),e.to_string()),
)?;
pw.set_proof_with_pis_target::<C, D>(
&cyc_targets.inner_cyclic_proof_with_pis,
&DummyProofGen::<F, D, C>::get_dummy_node_proof(
common_data,
&circ_data.verifier_only,
),
).map_err(|e|
CircuitError::ProofTargetAssignmentError("cyclic proof".to_string(),e.to_string()),
)?;
// assign verifier data
let dummy_ver = dummy_circuit::<F, C, D>(common_data).verifier_only;
pw.set_verifier_data_target(&cyc_targets.verifier_data, &dummy_ver)
.map_err(|e| CircuitError::VerifierDataTargetAssignmentError(e.to_string()))?;
}else{ // else add last proof
pw.set_bool_target(cyc_targets.condition, true)
.map_err(|e|
CircuitError::BoolTargetAssignmentError("condition".to_string(),e.to_string()),
)?;
let last_proof = self.latest_proof
.as_ref()
.ok_or_else(|| CircuitError::OptionError("cyclic proof".to_string()))?
.clone();
pw.set_proof_with_pis_target(&cyc_targets.inner_cyclic_proof_with_pis, &last_proof)
.map_err(|e|
CircuitError::ProofTargetAssignmentError("cyclic proof".to_string(),e.to_string()),
)?;
// assign verifier data
pw.set_verifier_data_target(&cyc_targets.verifier_data, &circ_data.verifier_only)
.map_err(|e| CircuitError::VerifierDataTargetAssignmentError(e.to_string()))?;
}
// prove
let proof = circ_data.prove(pw).map_err(
|e| CircuitError::InvalidProofError(e.to_string())
)?;
self.latest_proof = Some(proof.clone());
self.layer = self.layer + 1;
Ok(proof)
}
/// prove n recursive layers
/// the function takes
/// - circ_input: vector of n inputs
pub fn prove_n_layers(
&mut self,
circ_input: Vec<I::Input>,
) -> Result<ProofWithPublicInputs<F, C, D>>{
for i in 0..circ_input.len() {
self.prove_one_layer(&circ_input[i])?;
}
let latest_proofs = self.latest_proof.clone().ok_or(CircuitError::OptionError("proof not found".to_string()))?;
Ok(latest_proofs)
}
/// verifies the latest proof generated
pub fn verify_latest_proof(
&mut self,
) -> Result<()>{
let proof = self.latest_proof
.as_ref()
.ok_or_else(|| CircuitError::OptionError("cyclic proof".to_string()))?
.clone();
// TODO: check that the correct verifier data is consistent
self.cyclic_circuit_data.verify(proof).map_err(
|e| CircuitError::InvalidProofError(e.to_string())
)?;
Ok(())
}
/// Generates `CommonCircuitData` usable for recursion.
pub fn common_data_for_cyclic_recursion() -> CommonCircuitData<F, D>
{
// layer 1
let config = CircuitConfig::standard_recursion_config();
let builder = CircuitBuilder::<F, D>::new(config);
let data = builder.build::<C>();
// layer 2
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let proof = builder.add_virtual_proof_with_pis(&data.common);
let verifier_data =
builder.add_virtual_verifier_data(data.common.config.fri_config.cap_height);
builder.verify_proof::<C>(&proof, &verifier_data, &data.common);
let data = builder.build::<C>();
// layer 3
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let proof = builder.add_virtual_proof_with_pis(&data.common);
let verifier_data =
builder.add_virtual_verifier_data(data.common.config.fri_config.cap_height);
builder.verify_proof::<C>(&proof, &verifier_data, &data.common);
// pad with noop gates
while builder.num_gates() < 1 << 12 {
builder.add_gate(NoopGate, vec![]);
}
builder.build::<C>().common
}
}