331 lines
14 KiB
Rust

// some tests for approach 2 of the tree recursion
#[cfg(test)]
mod tests {
use std::time::Instant;
use plonky2::hash::hash_types::HashOut;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, Hasher};
use plonky2::plonk::proof::{ProofWithPublicInputs};
use codex_plonky2_circuits::circuits::sample_cells::SampleCircuit;
use crate::params::{F, D, C, HF};
use codex_plonky2_circuits::recursion::circuits::sampling_inner_circuit::SamplingRecursion;
use codex_plonky2_circuits::recursion::circuits::inner_circuit::InnerCircuit;
use codex_plonky2_circuits::recursion::tree2::leaf_circuit::{LeafCircuit, LeafInput};
// use plonky2_poseidon2::poseidon2_hash::poseidon2::{Poseidon2, Poseidon2Hash};
use crate::gen_input::gen_testing_circuit_input;
use crate::params::Params;
use codex_plonky2_circuits::recursion::tree2::{node_circuit::NodeCircuit, tree_circuit::TreeRecursion};
use codex_plonky2_circuits::recursion::tree2::dummy_gen::DummyProofGen;
use codex_plonky2_circuits::circuits::utils::vec_to_array;
/// Uses node recursion to sample the dataset
#[test]
fn test_leaf_circuit() -> anyhow::Result<()> {
const M: usize = 1;
const N: usize = 2;
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let params = Params::default();
let one_circ_input = gen_testing_circuit_input::<F,D>(&params.input_params);
let samp_circ = SampleCircuit::<F,D, HF>::new(params.circuit_params);
let inner_tar = samp_circ.sample_slot_circuit_with_public_input(&mut builder)?;
let mut pw = PartialWitness::<F>::new();
samp_circ.sample_slot_assign_witness(&mut pw,&inner_tar,&one_circ_input);
let inner_d = builder.build::<C>();
let inner_prf = inner_d.prove(pw)?;
let leaf_in = LeafInput{
inner_proof:inner_prf,
verifier_data: inner_d.verifier_data(),
};
let config2 = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config2);
let inner_circ = SamplingRecursion::<F,D,HF,C>::new(Params::default().circuit_params);
let leaf_circuit = LeafCircuit::<F,D,_>::new(inner_circ);
let s = Instant::now();
let leaf_tar = leaf_circuit.build::<C,HF>(&mut builder)?;
let circ_data = builder.build::<C>();
println!("build = {:?}", s.elapsed());
println!("sampling circuit size = {:?}", circ_data.common.degree_bits());
let s = Instant::now();
let mut pw = PartialWitness::<F>::new();
leaf_circuit.assign_targets::<C,HF>(&mut pw, &leaf_tar, &leaf_in)?;
let proof = circ_data.prove(pw)?;
println!("prove = {:?}", s.elapsed());
println!("num of pi = {}", proof.public_inputs.len());
let s = Instant::now();
assert!(
circ_data.verify(proof).is_ok(),
"proof verification failed"
);
println!("verify = {:?}", s.elapsed());
Ok(())
}
#[test]
fn test_node_circuit_approach2() -> anyhow::Result<()> {
const N: usize = 2; // binary tree
let config = CircuitConfig::standard_recursion_config();
let mut sampling_builder = CircuitBuilder::<F, D>::new(config);
//------------ sampling inner circuit ----------------------
// Circuit that does the sampling - default input
let mut params = Params::default();
let one_circ_input = gen_testing_circuit_input::<F,D>(&params.input_params);
let samp_circ = SampleCircuit::<F,D,HF>::new(params.circuit_params);
let inner_tar = samp_circ.sample_slot_circuit_with_public_input(&mut sampling_builder)?;
// get generate a sampling proof
let mut pw = PartialWitness::<F>::new();
samp_circ.sample_slot_assign_witness(&mut pw,&inner_tar,&one_circ_input);
let inner_data = sampling_builder.build::<C>();
let inner_proof = inner_data.prove(pw)?;
// ------------------- leaf --------------------
// leaf circuit that verifies the sampling proof
let inner_circ = SamplingRecursion::<F,D,HF,C>::new(Params::default().circuit_params);
let leaf_circuit = LeafCircuit::<F,D,_>::new(inner_circ);
let leaf_in = LeafInput{
inner_proof,
verifier_data: inner_data.verifier_data(),
};
let config = CircuitConfig::standard_recursion_config();
let mut leaf_builder = CircuitBuilder::<F, D>::new(config);
// build
let s = Instant::now();
let leaf_targets = leaf_circuit.build::<C,HF>(&mut leaf_builder)?;
let leaf_circ_data = leaf_builder.build::<C>();
println!("build = {:?}", s.elapsed());
println!("leaf circuit size = {:?}", leaf_circ_data.common.degree_bits());
// prove
let s = Instant::now();
let mut pw = PartialWitness::<F>::new();
leaf_circuit.assign_targets::<C,HF>(&mut pw, &leaf_targets, &leaf_in)?;
let leaf_proof = leaf_circ_data.prove(pw)?;
println!("prove = {:?}", s.elapsed());
println!("num of pi = {}", leaf_proof.public_inputs.len());
// verify
let s = Instant::now();
assert!(
leaf_circ_data.verify(leaf_proof.clone()).is_ok(),
"proof verification failed"
);
println!("verify = {:?}", s.elapsed());
// ------------- Node circuit ------------------
// node circuit that verifies leafs or itself
// build
let s = Instant::now();
let mut node = NodeCircuit::<F,D,C,N>::build_circuit::<_,HF>(leaf_circuit)?;
println!("build = {:?}", s.elapsed());
println!("leaf circuit size = {:?}", node.node_data.node_circuit_data.common.degree_bits());
// prove leaf
let s = Instant::now();
let mut pw = PartialWitness::<F>::new();
let leaf_proofs: [ProofWithPublicInputs<F, C, D>; N] =
vec_to_array::<N, ProofWithPublicInputs<F, C, D>>(
(0..N)
.map(|_| {
leaf_proof.clone()
})
.collect::<Vec<_>>()
)?;
let dummy_node_proofs: [ProofWithPublicInputs<F, C, D>; N] =
DummyProofGen::<F, D, C>::gen_n_dummy_node_proofs::<N>(
&node.node_data.inner_node_common_data,
&node.node_data.node_circuit_data.verifier_only,
)?;
NodeCircuit::<F,D,C,N>::assign_targets(
node.node_targets.clone(), //targets
leaf_proofs, // leaf proofs
dummy_node_proofs, // node proofs (dummy here)
&node.node_data.leaf_circuit_data.verifier_only, // leaf verifier data
&mut pw, // partial witness
true // is leaf
)?;
let node_proof = node.node_data.node_circuit_data.prove(pw)?;
println!("prove = {:?}", s.elapsed());
println!("num of pi = {}", node_proof.public_inputs.len());
let s = Instant::now();
assert!(
node.node_data.node_circuit_data.verify(node_proof.clone()).is_ok(),
"proof verification failed"
);
println!("verify = {:?}", s.elapsed());
// prove node
let s = Instant::now();
let mut pw = PartialWitness::<F>::new();
let node_proofs: [ProofWithPublicInputs<F, C, D>; N] =
vec_to_array::<N, ProofWithPublicInputs<F, C, D>>(
(0..N)
.map(|_| {
node_proof.clone()
})
.collect::<Vec<_>>()
)?;
let dummy_leaf_proofs: [ProofWithPublicInputs<F, C, D>; N] =
DummyProofGen::<F, D, C>::gen_n_dummy_leaf_proofs::<N>(
&node.node_data.leaf_circuit_data.common
)?;
NodeCircuit::<F,D,C,N>::assign_targets(
node.node_targets.clone(), //targets
dummy_leaf_proofs, // leaf proofs
node_proofs, // node proofs (dummy here)
&node.node_data.leaf_circuit_data.verifier_only, // leaf verifier data
&mut pw, // partial witness
false // is leaf
)?;
let node_proof = node.node_data.node_circuit_data.prove(pw)?;
// let node_proof = node_d.prove(pw)?;
println!("prove = {:?}", s.elapsed());
println!("num of pi = {}", node_proof.public_inputs.len());
let s = Instant::now();
assert!(
node.node_data.node_circuit_data.verify(node_proof.clone()).is_ok(),
"proof verification failed"
);
println!("verify = {:?}", s.elapsed());
Ok(())
}
#[test]
fn test_tree_recursion_approach2() -> anyhow::Result<()> {
const N: usize = 2; // binary tree
const K: usize = 4; // number of leaves/slots sampled - should be power of 2
let config = CircuitConfig::standard_recursion_config();
let mut sampling_builder = CircuitBuilder::<F, D>::new(config);
//------------ sampling inner circuit ----------------------
// Circuit that does the sampling - default input
let mut params = Params::default();
let one_circ_input = gen_testing_circuit_input::<F,D>(&params.input_params);
let samp_circ = SampleCircuit::<F,D,HF>::new(params.circuit_params);
let inner_tar = samp_circ.sample_slot_circuit_with_public_input(&mut sampling_builder)?;
// get generate a sampling proof
let mut pw = PartialWitness::<F>::new();
samp_circ.sample_slot_assign_witness(&mut pw,&inner_tar,&one_circ_input)?;
let inner_data = sampling_builder.build::<C>();
println!("sampling circuit degree bits = {:?}", inner_data.common.degree_bits());
let inner_proof = inner_data.prove(pw)?;
// ------------------- leaf --------------------
// leaf circuit that verifies the sampling proof
let inner_circ = SamplingRecursion::<F,D,HF,C>::new(Params::default().circuit_params);
let leaf_circuit = LeafCircuit::<F,D,_>::new(inner_circ);
let leaf_in = LeafInput{
inner_proof,
verifier_data: inner_data.verifier_data(),
};
let config = CircuitConfig::standard_recursion_config();
let mut leaf_builder = CircuitBuilder::<F, D>::new(config);
// build
let s = Instant::now();
let leaf_targets = leaf_circuit.build::<C,HF>(&mut leaf_builder)?;
let leaf_circ_data = leaf_builder.build::<C>();
println!("build = {:?}", s.elapsed());
println!("leaf circuit size = {:?}", leaf_circ_data.common.degree_bits());
// prove
let s = Instant::now();
let mut pw = PartialWitness::<F>::new();
leaf_circuit.assign_targets::<C,HF>(&mut pw, &leaf_targets, &leaf_in)?;
let leaf_proof = leaf_circ_data.prove(pw)?;
println!("prove = {:?}", s.elapsed());
println!("num of pi = {}", leaf_proof.public_inputs.len());
// verify
let s = Instant::now();
assert!(
leaf_circ_data.verify(leaf_proof.clone()).is_ok(),
"proof verification failed"
);
println!("verify = {:?}", s.elapsed());
// ------------- tree circuit ------------------
// node circuit that verifies leafs or itself
// build
let s = Instant::now();
let mut tree = TreeRecursion::<F,D,C,N>::build::<_,HF>(leaf_circuit)?;
println!("build = {:?}", s.elapsed());
println!("node circuit degree bits = {:?}", tree.node.node_data.node_circuit_data.common.degree_bits());
// prove leaf
let s = Instant::now();
let leaf_proofs: Vec<ProofWithPublicInputs<F, C, D>> = (0..K)
.map(|_| {
leaf_proof.clone()
})
.collect::<Vec<_>>();
let tree_root_proof = tree.prove_tree(leaf_proofs.clone())?;
println!("prove = {:?}", s.elapsed());
println!("num of pi = {}", tree_root_proof.public_inputs.len());
let s = Instant::now();
assert!(
tree.verify_proof(tree_root_proof.clone(),false).is_ok(),
"proof verification failed"
);
assert_eq!(
tree_root_proof.public_inputs[0..4].to_vec(),
get_expected_tree_root_pi_hash::<N>(leaf_proofs),
"Public input of tree_root_proof does not match the expected root hash"
);
println!("verify = {:?}", s.elapsed());
Ok(())
}
// ------------ Public Input Verification ------------
/// Recompute the expected root public input hash outside the circuit
fn get_expected_tree_root_pi_hash<const N:usize>(leaf_proofs: Vec<ProofWithPublicInputs<F, C, D>>)
-> Vec<F>{
// Step 1: Extract relevant public inputs from each leaf proof
// Assuming the first public input is the hash used for tree hashing
let mut current_hashes: Vec<HashOut<F>> = leaf_proofs
.iter()
.map(|p|HashOut::from_vec(p.public_inputs.clone())) // Adjust index if different
.collect();
// Step 2: Iteratively compute parent hashes until one root hash remains
while current_hashes.len() > 1 {
let mut next_level_hashes = Vec::new();
for chunk in current_hashes.chunks(N) {
// Ensure each chunk has exactly N elements
assert!(
chunk.len() == N,
"Number of proofs is not divisible by N"
);
// collect field elements
let chunk_f: Vec<F> = chunk.iter()
.flat_map(|h| h.elements.iter().cloned())
.collect();
// Compute Poseidon2 hash of the concatenated chunk
let hash = HF::hash_no_pad(&chunk_f);
next_level_hashes.push(hash);
}
current_hashes = next_level_hashes;
}
// The final hash is the expected root hash
current_hashes[0].elements.to_vec()
}
}