use std::marker::PhantomData; use plonky2::hash::hash_types::RichField; use plonky2::iop::target::BoolTarget; use plonky2::iop::witness::{PartialWitness, WitnessWrite}; use plonky2::plonk::circuit_builder::CircuitBuilder; use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget, VerifierOnlyCircuitData}; use plonky2::plonk::config::{AlgebraicHasher, GenericConfig}; use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget}; use plonky2_field::extension::Extendable; use plonky2_poseidon2::poseidon2_hash::poseidon2::Poseidon2; use crate::{error::CircuitError,Result}; // use crate::circuits::utils::vec_to_array; /// recursion node circuit - verifies M leaf proofs #[derive(Clone, Debug)] pub struct NodeCircuit< F: RichField + Extendable + Poseidon2, const D: usize, C: GenericConfig, H: AlgebraicHasher, const M: usize, > where >::Hasher: AlgebraicHasher { common_data: CommonCircuitData, leaf_verifier_data: VerifierOnlyCircuitData, phantom_data: PhantomData } #[derive(Clone, Debug)] pub struct NodeTargets< const D: usize, >{ pub leaf_proofs: Vec>, pub node_verifier_data: VerifierCircuitTarget, pub condition: BoolTarget, } impl< F: RichField + Extendable + Poseidon2, const D: usize, C: GenericConfig, H: AlgebraicHasher, const M: usize, > NodeCircuit where >::Hasher: AlgebraicHasher { pub fn new( common_data: CommonCircuitData, leaf_verifier_data: VerifierOnlyCircuitData, ) -> Self { Self{ common_data, leaf_verifier_data, phantom_data:PhantomData::default(), } } /// build the leaf circuit pub fn build(&self, builder: &mut CircuitBuilder) -> Result> { let inner_common = self.common_data.clone(); // assert public input is of size 8 - 2 hashout assert_eq!(inner_common.num_public_inputs, 8); // the proof virtual targets - M proofs let mut vir_proofs = vec![]; let mut pub_input = vec![]; for _i in 0..M { let vir_proof = builder.add_virtual_proof_with_pis(&inner_common); let inner_pub_input = vir_proof.public_inputs.clone(); vir_proofs.push(vir_proof); pub_input.extend_from_slice(&inner_pub_input[0..4]); } // hash the public input & make it public let hash_inner_pub_input = builder.hash_n_to_hash_no_pad::(pub_input); builder.register_public_inputs(&hash_inner_pub_input.elements); // virtual target for the verifier data let node_verifier_data = builder.add_virtual_verifier_data(inner_common.config.fri_config.cap_height); // virtual target for the verifier data let const_leaf_verifier_data = builder.constant_verifier_data(&self.leaf_verifier_data); // register only the node verifier data hash as public input. let mut vd_pub_input = vec![]; vd_pub_input.extend_from_slice(&node_verifier_data.circuit_digest.elements); for i in 0..builder.config.fri_config.num_cap_elements() { vd_pub_input.extend_from_slice(&node_verifier_data.constants_sigmas_cap.0[i].elements); } let vd_hash = builder.hash_n_to_hash_no_pad::(vd_pub_input); builder.register_public_inputs(&vd_hash.elements); // condition for switching between node and leaf let condition = builder.add_virtual_bool_target_safe(); // true -> node, false -> leaf let selected_vd = builder.select_verifier_data(condition.clone(), &node_verifier_data, &const_leaf_verifier_data); // verify the proofs in-circuit - M proofs for i in 0..M { builder.verify_proof::(&vir_proofs[i], &selected_vd, &inner_common); } // Make sure we have every gate to match `common_data`. for g in &inner_common.gates { builder.add_gate_to_gate_set(g.clone()); } // let proofs = vec_to_array::<2, ProofWithPublicInputsTarget>(vir_proofs)?; // return targets let t = NodeTargets { leaf_proofs: vir_proofs, node_verifier_data, condition, }; Ok(t) } /// assign the leaf targets with given input pub fn assign_targets( &self, pw: &mut PartialWitness, targets: &NodeTargets, node_proofs: &[ProofWithPublicInputs], verifier_only_data: &VerifierOnlyCircuitData, condition: bool, ) -> Result<()> { // assert size of proofs vec assert_eq!(node_proofs.len(), M); // assign the proofs for i in 0..M { pw.set_proof_with_pis_target(&targets.leaf_proofs[i], &node_proofs[i]) .map_err(|e| { CircuitError::ProofTargetAssignmentError("inner-proof".to_string(), e.to_string()) })?; } // assign the verifier data pw.set_verifier_data_target(&targets.node_verifier_data, &verifier_only_data) .map_err(|e| { CircuitError::VerifierDataTargetAssignmentError(e.to_string()) })?; // assign the condition pw.set_bool_target(targets.condition, condition) .map_err(|e| CircuitError::BoolTargetAssignmentError("condition".to_string(), e.to_string()))?; Ok(()) } /// returns the leaf circuit data pub fn get_circuit_data (&self) -> Result> where >::Hasher: AlgebraicHasher { let config = CircuitConfig::standard_recursion_config(); let mut builder = CircuitBuilder::::new(config.clone()); self.build(&mut builder)?; let circ_data = builder.build::(); Ok(circ_data) } }