// some tests for the tree recursion #[cfg(test)] mod tests { use plonky2::plonk::proof::{ProofWithPublicInputs}; use codex_plonky2_circuits::circuit_helper::Plonky2Circuit; use codex_plonky2_circuits::circuits::sample_cells::SampleCircuit; use crate::params::{F, D, C, HF}; use crate::gen_input::gen_testing_circuit_input; use crate::params::Params; use codex_plonky2_circuits::recursion::{tree::TreeRecursion}; use codex_plonky2_circuits::recursion::pi_verifier::{PublicInputVerificationCircuit, PublicInputVerificationInput}; use codex_plonky2_circuits::recursion::tree::get_hash_of_verifier_data; #[test] fn test_uniform_recursion() -> anyhow::Result<()> { // total number of proofs to aggregate const T:usize = 4; //------------ sampling inner circuit ---------------------- // Circuit that does the sampling - 100 samples let mut params = Params::default(); params.input_params.n_samples = 100; params.circuit_params.n_samples = 100; let one_circ_input = gen_testing_circuit_input::(¶ms.input_params); let samp_circ = SampleCircuit::::new(params.circuit_params); let (inner_tar, inner_data) = samp_circ.build_with_standard_config()?; let inner_verifier_data = inner_data.verifier_data(); let inner_prover_data = inner_data.prover_data(); println!("sampling circuit degree bits = {:?}", inner_verifier_data.common.degree_bits()); let inner_proof = samp_circ.prove(&inner_tar, &one_circ_input, &inner_prover_data)?; let proofs: Vec> = (0..T).map(|_i| inner_proof.clone()).collect(); // ------------------- tree -------------------- // 2-to-1 tree aggregation const N: usize = 1; const M: usize = 2; let mut tree = TreeRecursion::::build_with_standard_config(inner_verifier_data.common.clone(), inner_verifier_data.verifier_only.clone())?; // aggregate - no compression let root = tree.prove_tree(&proofs)?; println!("pub input size = {}", root.public_inputs.len()); println!("pub input = {:?}", root.public_inputs); println!("proof size = {:?} bytes", root.to_bytes().len()); // aggregate with compression // let root_compressed = tree.prove_tree_and_compress(&proofs)?; // println!("pub input size (compressed) = {}", root_compressed.public_inputs.len()); // println!("proof size compressed = {:?} bytes", root_compressed.to_bytes().len()); let inner_pi: Vec> = proofs.iter().map(|p| p.public_inputs.clone()).collect(); assert!( tree.verify_proof_and_public_input(root,inner_pi.clone(), false).is_ok(), "proof verification failed" ); // assert!( // tree.verify_proof_and_public_input(root_compressed,inner_pi, true).is_ok(), // "compressed proof verification failed" // ); Ok(()) } #[test] fn test_pi_verifier() -> anyhow::Result<()> { // total number of proofs to aggregate const T:usize = 4; // 9 field elems as public inputs in the sampling circuit const K:usize = 9; //------------ sampling inner circuit ---------------------- // Circuit that does the sampling - 100 samples let mut params = Params::default(); params.input_params.n_samples = 100; params.circuit_params.n_samples = 100; let one_circ_input = gen_testing_circuit_input::(¶ms.input_params); let samp_circ = SampleCircuit::::new(params.circuit_params); let (inner_tar, inner_data) = samp_circ.build_with_standard_config()?; let inner_verifier_data = inner_data.verifier_data(); let inner_prover_data = inner_data.prover_data(); // get generate a sampling proof println!("sampling circuit degree bits = {:?}", inner_verifier_data.common.degree_bits()); let inner_proof = samp_circ.prove(&inner_tar, &one_circ_input, &inner_prover_data)?; let proofs: Vec> = (0..T).map(|_i| inner_proof.clone()).collect(); // ------------------- tree -------------------- const N: usize = 1; const M: usize = 2; let mut tree = TreeRecursion::::build_with_standard_config(inner_verifier_data.common.clone(), inner_verifier_data.verifier_only.clone())?; let root = tree.prove_tree(&proofs)?; println!("pub input size = {}", root.public_inputs.len()); println!("proof size = {:?} bytes", root.to_bytes().len()); let inner_pi: Vec> = proofs.iter().map(|p| p.public_inputs.clone()).collect(); assert!( tree.verify_proof_and_public_input(root.clone(),inner_pi.clone(), false).is_ok(), "proof verification failed" ); // ------------------- Public input verifier Circuit -------------------- let pi_verifier_circ = PublicInputVerificationCircuit::::new(tree.get_node_common_data(), tree.get_node_verifier_data().verifier_only); let (pi_tarq, pi_circ_data) = pi_verifier_circ.build_with_standard_config()?; println!("PI verifier circuit degree bits = {:?}", pi_circ_data.common.degree_bits()); let pi_circ_input = PublicInputVerificationInput{ inner_proof:root, inner_pub_inputs_vals: inner_pi.clone() }; let pi_circ_verifier_data = pi_circ_data.verifier_data(); let pi_circ_prover_data = pi_circ_data.prover_data(); let proof =pi_verifier_circ.prove(&pi_tarq, &pi_circ_input, &pi_circ_prover_data)?; println!("pub input size = {}", proof.public_inputs.len()); println!("proof size = {:?} bytes", proof.to_bytes().len()); let pub_input_flat: Vec = inner_pi.iter().cloned().flatten().collect(); // sanity check on public input for (i, e) in proof.public_inputs.iter().enumerate(){ if i < pub_input_flat.len() { assert_eq!(*e, pub_input_flat[i]) } } // sanity check on the verifier data let hashed_node_vd = get_hash_of_verifier_data::(&tree.get_node_verifier_data()); for (i, &e) in proof.public_inputs[proof.public_inputs.len()-4 ..].iter().enumerate(){ assert_eq!(e, hashed_node_vd.elements[i]) } assert!( pi_circ_verifier_data.verify(proof).is_ok(), "pi-verifier proof verification failed" ); Ok(()) } }